HiD500-Series

HiD500 인버터 매뉴얼

HiD500 Inverter Manual

Read and understand these manuals before attempting any unpacking, assembly, operation or maintenance of the inverter. This manual should be applied only to HiD500 inverter. This manual dose not include all items regarding installation and maintenance procdures.

For more information, please contact authorized parteners.

인버터를 포장해체, 조립, 동작 유지보수를 하기 전 반드시 본 매뉴얼에 대해 숙지 하시기 바랍니다. 본 매뉴얼은 HiD500 인버터에 한해 적용됨을 유의 바랍니다. 또한 본 매뉴얼은 모든 제품에 대한 정보를 포함하고 있지 않습니다. 따라서 더 많은 정보를 원하실 경우 현대 일렉트릭 또는

영업점으로 문의 바랍니다.

발행일:

2018.03.06(VER.1)

목차

안전		7
매뉴얼에 사용된 안전 및	유용한 기호	7
경고		8
주의		
참조		
접지 및 지락 보호		
전자파 적합성 (El	ИС)	
RCD 또는 RCM 장	치 이용하기	
개봉 및 확인		14
포장 내용물		14
개봉 관련 안내 사항		14
명판 정보		
유형 명시 코드		
드라이브 중량		
프레임 인양		
"제품 수정" 요약		
폐기		
제품의 문의 및 보증		19
문의		
제품의 보증		
설치		20
설치 치수		
FR1 설치 치수	IP21	20
FR2 설치 치수	IP21	20
FR3 설치 치수	IP21	21
FR4 설치 치수	IP20	21
FR5 설치 치수	IPOO 및 IP20	
FR6 설치 치수	IPOO 및 IP20	23
냉각 요건		24
케이블 연결		
케이블 치수화 및 선택		
케이블 및 퓨즈 크기		
브레이크 저항기 케이블		29
DC 연결		

케이블 설치	케이블 설치 준비하기	
FR1 ~ FR3	케이블 설치	
FR4 ~ FR6	FR1 ~ FR3	
FRS-FR6 개방형 4 코너 접지 네트워크 내 설치 4 IT 시스템 내 설치 4 FR1 ~ FR6 EMC 점퍼 4 제어 장치 4 제어 장치 부품 4 네지 키패드 4 제어 장치 기이블 선택 4 제어 정치 기이블 선택 4 제어 정치 기이블 선택 4 제어 러미널 4 시운전 및 추가 지시사항 5 시운전 안전 5 트라이브 시운전 5 모터 시동 전 확인 사항 5 기이블 및 모터 절연 측정 5 케이블 및 모터 절연 측정 5 비IMS (현대 인버터 모니터링 소프트웨어) 5 HMI 키패드 5 HMI 키패드를 이용한 고장 리셋하기 5 HMI 키패드를 이용한 파라미터 값 편집하기 5 HMI 키패드 FUNCT 버튼(단축키) 6 도움말 텍스트 표시 6 파라미터 관리 6 고장 이력 표시하기 7 고장 리셋하기 7 일반적인 메뉴 구조 7 메나는 구조 개요 7	FR4 ~ FR6	
코너 접지 네트워크 내 설치 4 IT 시스템 내 설치 4 FR1 ~ FR6 EMC 점퍼 4 제어 장치 4 제어 장치 부품 4 HMI 키패드 4 제어 정치 기이블 선택 4 제어 허이블 선택 4 제어 허이블 전환 5 시운전 및 추가 지시사항 5 시운전 및 추가 지시사항 5 시운전 안전 5 트라이브 시운전 5 모터 신동 전 확인 사항 5 기이블 및 모터 절연 측정 5 가이블 및 모터 절연 측정 5 기이블 및 모터 절연 측정 5 비IMS(현대 인버터 모니터링 소프트웨어) 5 HIMS(현대 인버터 모니터링 소프트웨어) 5 HMI 키패드 5 HMI 키패드 탐석 5 HMI 키패드 티식 5 HMI 키패드 티식 5 HMI 키패드 티식 5 HMI 키패드 드 이용한 고장 리셋하기 5 HMI 키패드 드 21/원격 버튼 6 프라이터 관리 7 고장 리셋하기 7 고장 리셋하기	FR5-FR6 개방형	42
IT 시스템 내 설치 4 RR1 ~ FR6 EMC 점퍼 4 제어 장치 4 제어 장치 부품 4 내MI 키패드 4 제어 장치 케이블링 4 제어 지어 테이블 선택 4 제어 테이블 선택 4 제어 테이블 전 4 제어 테이블 5 시운전 및 추가 지시사항 5 시운전 안전 5 도금이트 신 6 도금이트 신 1 모터 시용전 확인 사항 5 기이를 및 모터 철연 측정 5 사용자 인터페이스 5 비MS(현대 인 버터 모니터링 소프트웨어) 5 HMI 키패드를 이용한 고장 리셋하기 5 HMI 키패드를 이용한 파라미터 값 편집하기 5 세대 키패드를 이용한 파라미터 값 편집하기 5 제어 위치 선택 - 로립/원격 버튼 6 HMI 키패드 FUNCT 버튼(단축키) 6 도움말 테스타 기 7	코너 접지 네트워크 내 설치	43
FR1 ~ FR6 EMC 점퍼	IT 시스템 내 설치	43
제어 장치 4 제어 장치 부품	FR1 ~ FR6 EMC 점퍼	44
제어 정치 부품	제어 장치	46
HMI 키패드 4 제어 장치 케이블링 4 제어 케이블 선택 4 제어 테이블 4 제어 테이블 4 제어 테이블 선택 4 제어 테이블 5 시운전 및 추가 지시사항 5 시운전 안전 5 드라이브 시운전 5 모터 시동 전 확인 사항 5 케이블 및 모터 절연 측정 5 사용자 인터페이스 5 HIMS(현대 인버터 모니터링 소프트웨어) 5 HMI 키패드를 이용한 고장 리셋하기 5 HMI 키패드를 이용한 고장 리셋하기 5 HMI 키패드를 이용한 파라미터 값 편집하기 5 제어 위치 선택 - 로컬/원격 버튼 6 도움말 텍스트 표시 6 파라미터 관리 6 고장 이력 표시하기 7 고장 리셋하기 7 일반적인 메뉴 구조 7 메뉴 구조 개요 7	제어 장치 부품	46
제어 장치 케이블링	HMI 키패드	47
제어 케이블 선택	제어 장치 케이블링	47
제어 터미널	제어 케이블 선택	47
시운전 및 추가 지시사항	제어 터미널	47
시운전 안전	시운전 및 추가 지시사항	
드라이브 시운전	시운전 안전	
모터 운용 5 모터 시동 전 확인 사항 5 케이블 및 모터 절연 측정 5 사용자 인터페이스 5 HIMS(현대 인버터 모니터링 소프트웨어) 5 HMI 키패드 5 HMI 키패드 탐색 5 HMI 키패드를 이용한 고장 리셋하기 5 HMI 키패드를 이용한 파라미터 값 편집하기 5 제어 위치 선택 - 로컬/원격 버튼 6 HMI 키패드 FUNCT 버튼(단축키) 6 도움말 텍스트 표시 6 파라미터 관리 6 고장 이력 표시하기 7 일반적인 메뉴 구조 7 메뉴 구조 개요 7	드라이브 시운전	
모터 시동 전 확인 사항	모터 운용	51
케이블 및 모터 절연 측정 5 사용자 인터페이스	모터 시동 전 확인 사항	51
사용자 인터페이스	케이블 및 모터 절연 측정	
HIMS(현대 인버터 모니터링 소프트웨어) 5 HMI 키패드 5 HMI 키패드 탐색 5 HMI 키패드를 이용한 고장 리셋하기 5 HMI 키패드를 이용한 파라미터 값 편집하기 5 제어 위치 선택 - 로컬/원격 버튼 6 HMI 키패드 FUNCT 버튼(단축키) 6 도움말 텍스트 표시 6 파라미터 관리 6 고장 이력 표시하기 7 고장 리셋하기 7 일반적인 메뉴 구조 7	사용자 인터페이스	53
HMI 키패드 5 HMI 키패드를 이용한 고장 리셋하기 5 HMI 키패드를 이용한 파라미터 값 편집하기 5 HMI 키패드를 이용한 파라미터 값 편집하기 5 제어 위치 선택 - 로컬/원격 버튼 6 HMI 키패드 FUNCT 버튼(단축키) 6 도움말 텍스트 표시 6 파라미터 관리 6 다중 모니터링 6 고장 이력 표시하기 7 고장 리셋하기 7 일반적인 메뉴 구조 7	HIMS(현대 인버터 모니터링 소프트웨어)	54
HMI 키패드 탐색 5 HMI 키패드를 이용한 고장 리셋하기 5 HMI 키패드를 이용한 파라미터 값 편집하기 5 제어 위치 선택 - 로컬/원격 버튼 6 HMI 키패드 FUNCT 버튼(단축키) 6 도움말 텍스트 표시 6 파라미터 관리 6 다중 모니터링 6 고장 이력 표시하기 7 고장 리셋하기 7 일반적인 메뉴 구조 7	HMI 키패드	55
HMI 키패드를 이용한 고장 리셋하기 5 HMI 키패드를 이용한 파라미터 값 편집하기 5 제어 위치 선택 - 로컬/원격 버튼 6 HMI 키패드 FUNCT 버튼(단축키) 6 도움말 텍스트 표시 6 파라미터 관리 6 다중 모니터링 6 고장 이력 표시하기 7 고장 리셋하기 7 일반적인 메뉴 구조 7 메뉴 구조 개요 7	HMI 키패드 탐색	57
HMI 키패드를 이용한 파라미터 값 편집하기	HMI 키패드를 이용한 고장 리셋하기	
제어 위치 선택 - 로컬/원격 버튼	HMI 키패드를 이용한 파라미터 값 편집하기	
HMI 키패드 FUNCT 버튼(단축키)	제어 위치 선택 - 로컬/원격 버튼	60
도움말 텍스트 표시	HMI 키패드 FUNCT 버튼(단축키)	61
파라미터 관리	도움말 텍스트 표시	65
다중 모니터링	파라미터 관리	66
고장 이력 표시하기	다중 모니터링	69
고장 리셋하기	고장 이력 표시하기	70
일반적인 메뉴 구조	고장 리셋하기	71
메뉴 구조 개요	일반적인 메뉴 구조	72
	메뉴 구조 개요	73

그룹 F - 즐겨찾기 파라미터 (퀵 & 마법사)	.73
F.1 - 마법사 하위 메뉴	.73
F.2 - 애플리케이션 선택 하위 메뉴	.73
F.3 - 기본 파라미터 하위 메뉴	.74
F.4 - 다목적 애플리케이션 파라미터 (기본 파라미터 제외) 파라미터 하위 메뉴	.77
F.5 - 로컬/원격 애플리케이션 파라미터 (기본 파라미터 제외) 하위 메뉴	.78
F.6 - 다단계 속도 애플리케이션 파라미터 (기본 파라미터 제외) 하위 메뉴	.79
F.7 - 모터 전위차계애플리케이션 파라미터 (기본 파라미터 제외) 하위 메뉴	.79
F.8 - PID 제어 애플리케이션 파라미터 (기본 파라미터 제외) 하위 메뉴	.80
F.9 - 다중 펌프 애플리케이션 파라미터 (기본 파라미터 제외) 하위 메뉴	.81
F.10 - 화재 모드 애플리케이션 파라미터 (기본 파라미터 제외) 하위 메뉴	.82
그룹 D - 디스플레이 그룹	.83
D.1 - 다중 모니터링 및 추이 곡선 그룹 하위 메뉴	.83
D.2 - 기본 모니터링 그룹 하위 메뉴	.83
D.3 - 유지보수 & 카운터 그룹 하위 메뉴	.85
D.4 - PID 그룹 하위 메뉴	.87
D.5 - 아날로그 입력 및 출력 하위 메뉴	.87
D.8 - 필드버스 모니터링 그룹 하위 메뉴	.88
D.9 - 타이머 모니터링 그룹 하위 메뉴	.89
D.10 - 모터 제어 변수 (출력 전류/전압) 하위 메뉴	.90
D.11 - 다중 펌프 모니터링	.90
그룹 A - 고급 설정 그룹	.91
A.1 - 제어 위치 하위 메뉴	.91
A.2 - 기준 주파수 (선택 & 한계) 하위 메뉴	.91
A.3 - 기동 및 정지 설정 (& 급속 정지) 하위 메뉴	.92
A.4 - 램프 설정 하위 메뉴	.93
A.5 - 팬 및 IGBT 제어 하위 메뉴	.93
A.6 - 개방형 루프 제어 파라미터(U/f, U/f + 슬립보상,) 하위 메뉴	.94
A.7 - 토크 제어 파라미터 (오픈/폐쇄) 하위 메뉴	.95
A.11 - 모터 제한 & 억제 (브레이크 초퍼 모드) 하위 메뉴	.96
A.12 - 감시 하위 메뉴	.97
A.13 - 일반 보호 설정 하위 메뉴	.98
A.14 - 모터 보호 하위 메뉴	.99
A.16 - AI 하한 보호 하위 메뉴1	00
A.17 - 주파수 명령 손실 보호 하위 메뉴1	00

A.18 - 모터 속도 보호 하위 메뉴	101
A.19 - 사용자 정의 보호 하위 메뉴	101
A.20 - 폴트 리셋 하위 메뉴	102
A.21 - 기동 및 정지 시 DC 제어 하위 메뉴	103
A.22 - 플럭스 제동 하위 메뉴	103
A.23 - 다단속 하위 메뉴	104
A.24 - 모터 절체 하위 메뉴	104
A.25 - 플라잉 기동 하위 메뉴	105
A.27 - 에너지 최적화 하위 메뉴	105
A.28 - 부하 드룹 하위 메뉴	105
A.29 - 모터 전위차계 하위 메뉴	106
A.30 - 조깅 하위 메뉴	106
A.31 - 조이스틱 하위 메뉴	107
A.32 - 기계식 브레이크 하위 메뉴	108
A.33 - 금지 주파수 하위 메뉴	109
A.34 - 모터 예열 하위 메뉴	109
A.35 - 화재 모드 하위 메뉴	110
A36 -PID 하위 메뉴	111
A.37 -PID 추가 기능 하위 메뉴	116
A.38 -PID 보호 하위 메뉴	118
A.39 - 외부 PID 하위 메뉴	120
A.40 - 외부 PID 보호 하위 메뉴	123
A.41 - 다중 모터 하위 메뉴	124
A.42 - 펌프 자동 세정 하위 메뉴	125
A.43 - 충압 펌프 및 시동 펌프 하위 메뉴	126
A.50 - 외부 옵션 설정 (사인 필터) 하위 메뉴	126
A.51 - 간격 1 하위 메뉴	127
A.52 -간격 2 하위 메뉴	127
A.53 -간격 3 하위 메뉴	128
A.54 -간격 4 하위 메뉴	128
A.55 - 간격 5 하위 메뉴	129
A.56 - 타이머 하위 메뉴	130
A.93 - 추이 곡선 파라미터 하위 메뉴	131
A.96 - 유지보수 & 카운터 하위 메뉴	131
A.97 - 사용자 설정 (언어, 인버터 이름, 사용자 레벨, 사용자 비밀번호) 하위	위 메뉴132

A.98 - 응용 설정 (비밀번호, 기능 키 설정) 하위 메뉴	
A.99 - 파라미터 관리 하위 메뉴	
그룹 C - 제어 터미널 및 옵션 그룹	134
C.1 - 키패드 설정 하위 메뉴	134
C.2 - 디지털 입력 로직 하위 메뉴	134
C.3 - 디지털 입력 설정 (DI 기능) 하위 메뉴	
C.4 - 아날로그 입력 설정 하위 메뉴	141
C.6 - 기본 디지털/릴레이 출력 설정 하위 메뉴	142
C.11 - 기본 아날로그 출력 설정 하위 메뉴	144
C.20 - 필드버스 데이터 선택 하위 메뉴	145
C.21 - RS-485 일반 설정(프로토콜 선택) 하위 메뉴	145
C.22- 필드버스1-1: 모드버스 RTU 설정 & 모니터링 하위 메뉴	146
C.25 – Ethernet 일반 설정 (프로토콜 선택) 하위 메뉴	147
C.26 - 필드버스2-1: 모드버스 TCP 하위 메뉴	147
그룹 H – 모터 파라미터 그룹	149
H.1 - 모터 명판 설정	149
H.3 - 오토튜닝 파라미터(IM)	149
폴트	151
폴트 코드, ID, 이름, 상당한 근거, 권장 해결책	151
고장 리셋하기 (예)	152
고장 이력 표시하기	153
기술 데이터	161
전력 정격	
주전압 208~240V	
주전압 380~500V	
과부하 용량	
브레이크 저항기 정격	164
부록	165
필드버스 연결	165
Ethernet 케이블을 통해 필드버스 사용하기	
RS485 케이블을 통해 필드버스 사용하기	
유지보수	
캐패시터 재충전	

안전

매뉴얼에 사용된 안전 및 유용한 기호

다음 안전 기호가 해당 매뉴얼 전반에 걸쳐 사용되었습니다.

기호	설명
	경고
	주의
i	참조

1. 표 - 매뉴얼에 사용된 안전 기호

경고

"경고" 표시된 지시사항을 따르지 않을 경우 위험한 상황이 발생할 수 있으며, 이는 심각하거나 생명을 위협하는 부상, 또는 사망 및/또는 장비에 심각하거나 돌이킬 수 없는 손상을 야기할 수 있습니다.

주의

"주의" 표시된 지시사항을 따르지 않을 경우 위험한 상황이 발생할 수 있으며, 이는 경미하거나 중간 정도의 부상 및/또는 장비에 사소하거나 중간 정도, 또는 복구할 수 있는 손상을 야기할 수 있습니다.

참조

경고

장비로 작업하는 직원, 장비에서 작업하는 직원, 또는 장비와 물리적인 접촉을 하는 직원은 반드시 다음 지시사항을 정독하고 숙지하며 따라야 합니다.

장비를 사용하기에 앞서 본 매뉴얼에 적힌 모든 지시사항을 주의 깊게 읽고 숙지하시기 바랍니다.

경고!

드라이브가 주전원에 연결되어 있을 때에는 전원 장치의 부품을 만지지 마시오. 드라이브가 주전원과 연결되어 있으면 부품에 전기가 흐릅니다. 해당 전압과 접촉 시 매우 위험합니다.

경고!

드라이브가 주전원에 연결되어 있을 때에는 모터 케이블 터미널 U, V 및 W, 브레이크 저항기 터미널, 또는 DC 터미널을 만지지 마시오. 드라이브가 주전원에 연결되어 있을 때 외에도 모터가 작동하지 않을 때에도 이들 터미널에 전기가 흐릅니다.

경고!

제어 터미널을 만지지 마시오. 드라이브가 주전원에서 분리된 경우에도 위험 수준의 전압이 흐를 수 있습니다.

경고! ㅋㅋ ·

전기 작업을 할 때에는 드라이브의 부품에 전압이 흐르지 않는지 확인 하시오.

경고!

드라이브의 터미널 연결 작업 시에는 주전원에서 드라이브를 분리하고, 모터가 정지했는지 확인하시오. 5분 정도 기다린 후 드라이브 덮개를 여시오. 그런 다음 측정 장치를 이용해 전압이 없는지 확인합니다. 드라이브가 주전원에서 분리되고 모터가 정지한 후에도 터미널 연결 및 드라이브 부품에는 5분 동안 전기가 흐릅니다.

경고!

드라이브의 전면 커버와 케이블 커버가 닫혀 있는지 확인한 후, 드라이브를 주전원에 연결하시오. 드라이브가 주전원과 연결되어 있으면 AC 드라이브 부품에 전기가 흐릅니다.

경고!

경고!

우발적 기동이 위험할 수도 있는 경우에는 모터를 드라이브에서 분리하시오. 전원이 들어오고 나가거나, 고장을 리셋할 때, 기동 신호가 활성화되어 있는 경우에는 모터가 즉시 기동하고, 그렇지 않으면 기동/정지 로직에 대한 펄스 제어가 선택됩니다. 파라미터, 애플리케이션 또는 소프트웨어가 변경되면, I/O 기능(기동 입력 포함)도 변경될 수 있습니다.

설치, 케이블링 또는 유지보수 작업을 할 때에는 보호 장갑을 착용하시오. AC 드라이브에 자상을 야기할 수 있는 날카로운 부분이 있을 수 있습니다.

주의

AC 드라이브를 움직이지 마시오. 고정식 설치로 드라이브 손상을 방지하세요

주의!

주의!

AC 드라이브가 주전원과 연결되어 있는 경우에는 측정하지 마시오. 드라이브 손상을 야기할 수 있습니다.

주의!

강화 보호 접지 연결이 되었는지 확인하시오. AC 드라이브의 접촉 전류가 3.5mA AC (EN 61800-5-1 참조) 이상이므로, 필수 사항입니다. *접지 및 지락 보호* 챕터를 참조하세요.

주의!

제조사에서 제공하지 않는 예비 부품을 사용하지 마시오. 다른 예비 부품을 사용하면 드라이브 손상을 야기할 수 있습니다.

주의!

회로 보드에 있는 부품을 만지지 마시오. 정전압이 부품 손상을 야기할 수 있습니다.

주의!

AC 드라이브의 EMC 레벨이 주전원과 일치하는 지 확인하시오.. *"IT 시스템 내 설치* "를 참조하세요. EMC 레벨이 정확하지 않으면 드라이브 손상을 야기할 수 있습니다..

주의!

전파 장해를 예방하세요. AC 드라이브가 국내 환경에서 전파 장해를 일으킬 수 있습니다.

참조!

자동 리셋 기능을 활성화하는 경우, 자동 고장 리셋 후 모터가 자동으로 기동합니다. *애플리케이션 매뉴얼*을 참조하세요.

참조!

AC 드라이브를 설비 부품으로 사용하는 경우, 설비 제조사에서는 반드시 주전원 차단 설비를 구비해야 합니다 (EN 60204-1 참조).

- 작동에 나쁜 영향을 미칠 수 있습니다. 항상 접지 터미널에 연결되어 있는 접지선을 통해 접지가 이루어져야 합니다 (臺로 표시).
- 전원 케이블 차폐는 장비 접지선에 적합한 것으로 충분한 크기의 차폐가 안전 규정을 충족할 때에만 이용합니다. 드라이브의 정상 접촉 전류는 3.5mA AC 이상이고, 이 경우, 표준 EN 61800-5-1 (제 4.3.5.5.2.장)에서는 고정형 보호 접지 연결을 요구합니다.

또한

- 보호 접지선 단면적이 최소 10mm² Cu 또는 16mm² Al여야 하거나
- 보호 접지선을 분리하는 경우 전원 공급 장치가 자동으로 분리되어야 하거나
- 원래의 보호 접지선과 단면적이 동일한 두 번째 보호 접지선이 있어야 합니다.

상 도체의 단면적 (S) [mm²]	보호 접지선의 최소 단면적 [mm²]
S ≤ 16	S
16 < S ≤ 35	16
35 < S	S/2

표 2 보호 접지선 단면적 요건

참조!

표 2에 나타낸 값은 보호 접지선이 상도체와 동일한 재질로 이루어져 있는 경우에 한해 유효합니다. 그렇지 않은 경우, 보호 접지선의 단면적은 해당 표를 적용한 결과에 상응하는 전도도를 생산하는 방식으로 결정해야 합니다.

참조!

주케이블 또는 케이블 인클로저에 통합된 부분이 아닌 각 보호 접지선의 최소 단면적은 반드시 다음과 같아야 합니다.

> 기계식 케이블 보호가 존재할 때, 2.5mm² 기계식 케이블 보호가 존재하지 않을 때, 4mm²

주의! 보호 접지선의 최소 크기에 대해서는 항상 현지 규정을 따르시오!

주의!

장비에는 고용량의 전류가 존재하므로 고장 전류 보호 스위치가 정확히 작동한다는 점을 보장할 수 없습니다.

주의!

장비를 대상으로 내전압 시험을 실시하지 마세요. 내전압 시험은 모든 장비에 대한 정기 시험 절차의 일부입니다. 사이트에서 내전압 시험을 반복적으로 실시하면 장비가 손상될 수 있습니다.

전자파 적합성 (EMC)

IEC 61000-3-12에서 요청하는 대로, 단락 전원(S_{SC})은 공용 주전원에 공통 연결점에서 R_{SCE} = 120으로 결정되는 최소값이어야 합니다.

RCD 또는 RCM 장치 이용하기

드라이브는 보호 접지선에서 전류를 발생시킬 수 있습니다. 잔여 전류 소멸(RCD) 장치나 잔여 전류 모니터링(RCM) 장치를 이용해 직접 또는 간접 접촉을 방지할 수 있습니다. 드라이브 주전원 쪽에 있는 B형 RCD 또는 RCM 장치를 사용하세요.

개봉 및 확인

포장 내용물

드라이브 장치 HiD500 인버터 매뉴얼

개봉 관련 안내 사항

드라이브 장치는 시험 (R/T 시험) 절차를 시행하여 공장 출고 시 최상의 장비 품질을 보장합니다. 수령 시, 포장 내용물과 문서를 대조해 운송 과정 중 발생할 수 있는 불일치, 이상 또는 손상 사항을 점검합니다.

불만 사항을 제기하는 경우에는 먼저, 화물 보험사나 운송 회사에 문의하시기 바랍니다. 주문한 제품의 사양과 박스 스티커 및 인버터 명판 스티커 내용을 참고하시기 바랍니다. 명판 정보

1. 그림 - 명판 정보

- A) 모델명 프레임
- B) 입력 전원 사양 200V : 208 ~ 240V, 400V : 380 ~ 500V
- C) 인버터 출력, 경부하(Light Duty)
- D) 주문 정보 (HiD500 3상 경부하 출력전류 전압사양 + IP보호등급)
- E) 시리얼 넘버
- F) 단위 중량
- G) 포장 수량
- H) 인버터 입력 전류 사양: 3상, 경부하 입력전류 / 중부하 입력전류 @40℃
- I) 인버터 출력 전류 사양: 3상, 경부하 출력전류 / 중부하 출력전류 @40℃

유형 명시 코드

"유형 ID"는 장비를 명시적으로 식별하는 데 사용될 수 있습니다. "유형 ID"는 각기 다른 표준 및 옵션 섹션으로 구성됩니다. 유형 ID의 각 부분은 장치 주문 시 제공되는 정보에 매핑될 수 있습니다.

HiD500-3L-bbbb-c+dddd

섹션	의미
HiD500	시리즈 명
3L	3상 입력
bbbb	정격 전류 [A]
	정격 입력 전압
с	2= 208-240 V
	5= 380-500 V
dddd	옵션 코드 (예, IP 등급)

표 3 - 유형 명시 코드 설명

드라이브 중량

ᅲᆀ이	무게, IP20/21		무게, IP00		비고
프데임	[kg]	[lb.]	[kg]	[lb.]	
FR1	7.2	15.9	-		
FR2	11.2	24.7	-		
FR3	18.0	39.7	-		
FR4	40.0	88.1	-		
FR5	69.0*	152.1	63.0	138.9	*옵션 사항
FR6	100.0*	220.5	97.0	213.8	*옵션 사항

^{4.} 표 - 프레임 무게 목록

프레임 인양

주의!

프레임을 들어 올리거나 옮길 때에는 항상 무게를 충분히 지탱할 수 있을 만큼 튼튼한 승강 장치를 이용하시오.

반드시 다음 절차에 따라 프레임을 들어 올리거나 옮기세요.

- 1. 장비를 팰릿(팰릿이 있는 경우) 및 기타 지지물(지지물이 있는 경우)과 분리하세요.
- 2. 드라이브가 고정되어 있던 팰릿(팰릿이 있는 경우)과 기타 지지물(지지물이 있는 경우)에서 드라이브를 들어 올립니다.
- 3. 구멍 2개를 이용해 대칭으로 승강 고리를 부착하세요 (아래 그림 참조).
- 최대 허용 승강 각도(α)는 30°(도)입니다. 필요 시, 리프팅 빔을 이용해 아래 그림과 같이 승강 절차를 지원합니다.

그림 2. 승강 배치 (예)

"제품 수정" 요약

참조!

사이트에 장비를 설치하기에 앞서 장비에 "제품 수정" 요약 비네트를 부착할 것을 강력히 권장합니다. 해당 라벨은 장비 설치 후 장비의 불일치 및 수정 사항에 대한 요약 내용을 제공할 수 있습니다.

폐기

제품 수명 주기를 다한 장비는 정확한 절차에 따라 폐기 프로세스되어야 합니다. 생활 폐기물과 같이 장비를 폐기하지 마십시오. 폐기물인 전기·전자 부품은 재활용 센터에서 재활용 하십시오. 항상 현지 적용 규정을 준수 하십시오.

문의

인버터의 손상, 불명의 부품 혹은 기타 문의 사항이 있을 시 아래의 내용과 함께 구입처에 연락하여 주십시오.

- 1) 인버터 모델
- 2) 제조번호
- 3) 구입일
- 4) 문의 내용
 손상된 부품과 상태 등
 불명의 부품과 상태 등

제품의 보증

제품의 보증기간은 구입 후 1년 입니다. 그러나 보증기간 내에 아래의 사항과 같이 문제가 있다면 보증을 받을 수 없으며 유상처리 됩니다.

- 1) 사용상 잘못 및 부적절한 수리, 개조가 원인인 경우
- 2) 고장의 원인이 인버터 이외의 사유에 의한 경우
- 3) 사양에 맞지 않게 제품을 사용할 시
- 4) 기타 자연재해(지진, 번개 등)

단, 여기서 언급된 보증은 인버터 자체의 보증을 의미하므로, 인버터의 고장으로 발생된 손해는 책임을 지지 않습니다.

유상처리 보증기간(1년)을 넘으면 시험 혹은 수리는 전체 유상처리 됩니다. 보증기간 내에 상기 언급한 사항에 의해 발생된 수리 및 시험은 무상으로 처리되지 않습니다. 만약 보증기간에 어떤 문제가 있다면 구입처에 문의하여 주십시오. 설치

장비는 평면에 바로 세워서 설치해야 합니다.

설치 치수

FR1 설치 치수 IP21

3. 그림 - 프레임1 설치 치수 [mm]

FR2 설치 치수 IP21

4. 그림 - 프레임2 설치 치수 [mm]

5. 그림 - 프레임3 설치 치수 [mm]

6. 그림 - 프레임4 설치 치수 [mm]

21

FR5 설치 치수 IP00 및 IP20

22

9. 그림 - 프레임6 설치 치수 IP00 [mm]

10. 그림 - 프레임6 설치 치수 IP20 [mm]

냉각 요건

주의!

애플리케이션에 따라 장비를 운용하는 동안 상당한 열이 발생할 수 있습니다. 내부 팬이 자동으로 공기를 순환시켜 내부 온도값을 최적으로 유지합니다. 내부 팬을 가장 효과적으로 작동시키려면,

- 냉각 공기가 순환할 수 있도록 장비 주변에 충분한 공간을 확보 하십시오.

 냉각 공기의 온도는 항상 작동 온도 허용 범위의 하한값과 상한값 사이에 위치해야 합니다.

참조!

수직으로 배치하는 경우, 개별 냉각 시스템을 분리하는 금속 시트를 상부 및 하부 장치에 반드시 조립해야 합니다!

참조!

장비를 캐비닛 내부에 설치하는 경우, 공기가 재순환하지 않도록 해야 합니다!

그림 11 설치 환경 - 간격 요건

A. 인버터 주변 여유 공간

C. 인버터 상부 여유 공간

B. 캐비닛 또는 인버터간 여유 공간

D. 인버터 하부 여유 공간

ᅲᆀ이	[mm]			[in]				
프데임	А	В	С	D*	Α	В	С	D
FR1	20	20	100	50	0.8	0.8	3.9	2.0
FR2	20	20	120	60	0.8	0.8	4.7	2.4
FR3	20	20	160	80	0.8	0.8	6.3	3.1
FR4	20	20	250	100	0.8	0.8	9.8	3.9
FR5	20	20	300	150	0.8	0.8	11.8	5.9
FR6	20	20	350	200	0.8	0.8	13.8	7.9

표 5 (최소) 간격 요건

D*: 전원 케이블링 공간 요건을 고려하세요.

프레임	냉각수 (공기) 요건 [m³/h]	냉각수 (공기) 요건 [CFM]
FR1	48	28
FR2	100	59
FR3	200	118
FR4	250	147
FR5	470	277
FR6	850	500

표 6 냉각 공기 필요량

주케이블은 터미널 L1, L2, L3와 연결됩니다. 모터 케이블은 터미널 U, V, W와 연결됩니다.

그림 12 주요 연결 다이어그램 A. 제어 패널 (HMI 키패드) B. 제어 장치 C. 전원 장치

최소 내열성이 +70°C 인 케이블을 이용하세요. 퓨즈로 드라이브와 입력 케이블을 보호하세요. 케이블 및 퓨즈 선택 시, 드라이브의 정격 **출력** 전류를 참고하세요. 정격 출력 전류는 명판에서 찾을 수 있습니다.

표 7 올바른 케이블 선택

	EMC 요건					
케이블 유형	1차 환경*	2차 환경				
	카테고리 C2*	카테고리 C3	카테고리 C4			
주케이블	1	1	1			
모터 케이블	3	2	2			
제어 케이블	4	4	4			

* C2 등급이 필요한 경우, 입력단 커먼 모드 필터 사용이 권장됩니다.

- 1. 고정 설치용 전원 케이블. 특정 주전압용 케이블. 차폐형 케이블이 권장되나 필수 사항은 아닙니다.
- 2. 동축 보호선이 있는 대칭 전원 케이블.
- 3. 소형 저임피던스 보호 장치가 있는 대칭 전원 케이블.. 케이블 전달 임피던스 (1...30MHz)는 최대 100mΩ/m을 권장합니다. EMC C2 레벨의 경우, 모터 끝에 케이블 글랜드가 있는 360° 접지 보호 장치가 필요합니다.
- 4. 편조 차폐 구리선이 있는 다심 케이블, 정격 온도 60℃ 이상인 경우

4-도체 시스템 (PVC 배관 내, 3상 및 PE 도체)가 입력(주전원) 케이블링으로 허용됩니다. PE 도체는 반드시 EN 61800-5-1 (제 1 4.3.5.4장)의 요건을 만족해야 합니다. 본 문서의 접지 및 지락 보호 챕터를 참조하세요. 차폐로 3상 전도체와 동심 PE 전도체가 있는 대칭 차폐 케이블. 차폐는 반드시 EN 61800-5-1 (제 4.3.5.4장)의 요건을 만족해야 합니다. 본 문서의 *접지 및 지락 보호* 챕터를 참조하세요. 차폐로 3상 전도체와 동심 PE 전도체가 있는 대칭 차폐 케이블. 차폐가 EN 61800-5-1 (제 4.3.5.4장)의 요건을 만족하지 않는 경우, 2 - 3 PE 개별 PE 전도체가 요구됩니다. 본 문서의 접지 및 지락 보호 챕터를 참조하세요. 차폐로 3상 전도체와 대칭으로 구성된 PE 전도체가 있는 대칭 차폐 케이블. PE 전도체는 반드시 EN 61800-5-1 (제 4.3.5.4장)의 요건을 만족해야 합니다. 본 문서의 *접지 및 지락 보호* 챕터를 참조하세요. 제어 케이블: 이중 차폐 4 단일 차폐

그림 13 권장 전원 및 통신 케이블

모든 프레임에서 EMC 요건을 준수하기 위해 스위칭 주파수의 기본값을 이용하세요. 안전 스위치를 설치한 경우, 케이블 시작부터 끝까지 EMC 보호가 지속되는지 확인하세요.

케이블 치수화 및 선택

이 지침은 모터 1개와 케이블 1개로 AC 드라이브부터 모터를 연결하는 과정에 한해 유효합니다. 기타 다른 조건의 경우, 보다 자세한 정보는 제조사에 문의하세요.

케이블 및 퓨즈 크기

퓨즈 유형 gG/gL (IEC 60269-1)을 권장합니다. 퓨즈 전압 정격 선택 시, 주전원을 참조하세요. *표 8* 에서 권장하는 퓨즈 크기보다 큰 퓨즈를 사용하지 마세요. 퓨즈 동작 시간은 0.4초를 넘기지 않도록 선정합니다. 동작 시간은 퓨즈 유형 및 공급 회로의 임피던스와 일치합니다. 보다 빠른 퓨즈 관련 상세한 정보는 제조사에 문의하세요. 제조사에서는 일부 aR (UL 인정, IEC 60269-4) 및 gS (IEC 60269-4) 퓨즈 범위 또한 권장할 수 있습니다. 표에는 AC 드라이브와 함께 사용할 수 있는 일반적인 케이블 크기 및 유형도 나타나 있습니다. 케이블 선택 시, 현지 규정, 케이블 설치 조건 및 케이블 사양을 참조하세요.

	220V급		440V급		퓨즈	주전원, 모터 및	터미널 케이블 크기		
프레임					(gG/gL)	브레이크 저항기*	주전원 케이블	접지 터미널	
	모델	IL [A]	모델	IL [A]	[A]	케이블 Cu [mm²]	터미널 [mm²]	크기	
	0003-2	3.7	0002-5	2.6		3x1.5+1.5		M4	
	0004-2	4.8	0003-5	3.4	6		1—6 단신 1 4 여서		
	0003-2	3.7	0004-5	4.8			1-4 연신		
FR1	0007-2	6.6	0006 5	6.0	10	3x1.5+1.5	1—6 단선	M4	
	0008-2	8.0	0008 5	8.0	10		1—4 연선		
	0011-2	11.0	0009 5	9.6	16	3x2.5+2.5	1—6 단선	M4	
	0012-2	12.5	0012-5	12.2	10		1—4 연선		
	-	-	0016-5	16.3	20	3x6+6	1—10 Cu	M4	
500	0018-2	18.0	-	-	25	3x6+6	1—10 Cu	M4	
FRZ	0025-2	25.0	0023-5	23.2	32	3x10+10	1—10 Cu	M4	
	0031-2	31.0	0031-5	31.0	40	3x10+10	2.5—50 Cu	M4	
	-	-	0038-5	38.0	50	3x16+16 (Cu)	2.5—50 Cu	M5	
FR3	0048-2	48.0	0046-5	46.0	63	3x16+16 (Cu)	2.5—50 Cu	M5	
	0062-2	62.0	0061-5	61.0	80	3x25+16 (Cu)	2.5—50 Cu	M5	
	0075-2	75.0	0074-5	74.5	100	3x35+16 (Cu)	M6	M6	
FR4	0088-2	88.0	0090-5	90.3	100				
	0116-2	116.0	0106-5	106.7	125	3x50+25 (Cu)	M6	M6	
FR5	0146-2	146.0	0152-5	152.0	160	3x70+35 (Cu)	M10	M8	
	0170-2	170.0	0170-5	170.0	200	3x95+50 (Cu)	M10	M8	
	0220-2	220.0	0223-5	223.0	250	3x120+70 (Cu)	M10	M8	
EDG	0261-2	261.0	0264-5	264.0	315	3x185+95 (Cu)	M10	M8	
гко	0310-2	310.0	0310-5	310.0	350	2x3x95+50 (Cu)	M10	M8	

표 8 HiD500 시리즈용 케이블 및 퓨즈 크기, 주전압 208~240V 및 380~500V

* 브레이크 저항기 기능을 이용할 수 있는 경우. 다중 도체 케이블을 이용하는 경우, 브레이크 저항기 케이블의 도체 1개는 미연결 상태로 둡니다. 케이블의 최소 단면을 준수하는 경우, 싱글 케이블을 이용하는 것도 가능합니다.

표 8 에 나타낸 케이블 크기는 다음을 기준으로 합니다.

- PVC 절연
- 최대 주위 온도 30°C 이상
- 표면 온도 70°C
- 대칭 차폐 모터 케이블 이용
- 병렬 케이블의 최대 개수는 9개로, 케이블 래더에 나란히 놓습니다.

병렬 케이블을 이용할 때에는 단면적 및 최대 케이블 수 요건을 반드시 준수하세요. 접지선 요건에 관한 중요한 정보는 *접지 및 지락 보호* 챕터를 참조하세요. 케이블 치수는 반드시 표준 IEC60364-5-52의 요건과 일치해야 합니다. 각 온도에 대한 보정 계수는 표준 IEC60364-5-52를 참조하세요.

브레이크 저항기 케이블

HiD500 시리즈 드라이브에는 외부 브레이크 저항기 옵션용 터미널을 제공합니다.. 이들 터미널은 DC+/R+ 및 R-로 구별됩니다(단, FR5-6은 내부 브레이크 초퍼 미제공). 권장 브레이크 저항기 케이블을 표 8 와 표 9 에서 찾을 수 있습니다.

주의!

다중 도체 케이블을 이용하는 경우, 브레이크 저항기 케이블의 도체 1개는 미연결 상태로 둡니다. 남아 있는 전도체를 절단하여 도전 부품과 돌발적인 접촉을 방지하세요. 브레이크 저하기 저경에 대해서는 *브레이크 저하기 저경* 채터를 차조하네요.

브레이크 저항기 정격에 대해서는 *브레이크 저항기 정격* 챕터를 참조하세요.

참조!

프레임 FR1-4에는 기본 사양으로 브레이크 초퍼가 있습니다. FR5-6에는 내부 브레이크 기능이 없습니다.

DC 연결

DC+ 및 DC- 터미널은 다양한 장치의 공통된 DC 구성을 위한 것으로, 한 드라이브에서 에너지를 회생시켜 모터 모드에서 다른 드라이브가 이를 활용할 수 있도록 합니다. 해당 애플리케이션에 관한 내용은 현대 일렉트릭에 문의하세요. 케이블 설치 준비하기

- 시작에 앞서 AC 드라이브의 부품 일체에 전기가 흐르지 않는지 확인하세요. *안전* 챕터에 있는 경고를 주의깊게 읽으세요.
- 모터 케이블이 기타 다른 케이블과 멀리 떨어져 있는지 확인하세요.
- 모터 케이블은 반드시 다른 케이블과 90° 각도로 교차되어야 합니다.
- 가능한 경우, 모터 케이블을 다른 케이블과 길게 평행으로 놓지 마세요.
- 모터 케이블이 다른 케이블과 평행으로 놓는 경우, 최소 간격을 지키세요 (*표 10 케이블 간 최소 간격* 참조).
- 간격은 모터 케이블과 기타 다른 시스템의 신호 케이블 간에도 유효합니다.
- 차폐 모터 케이블의 최대 길이는 100m / 328ft (FR1의 경우), 150m / 492ft (FR2 및 FR3의 경우), 200m / 656ft (FR4, FR5 및 FR6의 경우)입니다.
- 케이블 절연 여부를 확인해야 하는 경우, 케이블 및 모터 절연 측정 챕터의 지침을 참조하세요.

표 9 케이블 간 최소 거리

케이블 간 거리 [m]	차폐 케이블 길이 [m]	케이블 간 거리 [ft]	차폐 케이블 길이 [ft]
0.3	≤ 50	1.0	≤ 164.0
1.0	≤ 200	3.3	≤ 656.1

케이블 설치

FR1 ~ FR3

1. 모터 케이블, 주전원 케이블 및 브레이크 저항기 케이블 피복을 제거하세요.

프레임	А	В	С	D	E	:	F	G
FR1	8 / 0,32	30 /	1,2	8 / 0,32	30 / 1,2	8 / 0,32	30 / 1,2	*
FR2	10 / 0,4	50 / 2	2,04	10 / 0,4	50 / 2,04	10 / 0,4	50 / 2,04	*
FR3	20 / 0,81	50 / 2	2,04	20 / 0,81	50 / 2,04	20 / 0,81	50 / 2,04	*

표 10 케이블 피복 제거 길이 [mm / in]

* G. 접지선. 모터 측은 가능한 한 짧게 합니다.

그림 14 케이블 PE 작업 방법

2. 드라이브의 하부 커버를 개방하세요.

3. 케이블 커버의 나사를 풀어낸 후, 케이블 커버를 분리합니다.

그림 16 케이블 커버 분리

4. 그로밋을 케이블 입구 플레이트의 개구부에 놓습니다. 그림17 에는 IP21 그로밋이 나타나 있습니다. 5. 주케이블(1), 모터 케이블(3) 및 옵션 브레이크 케이블(2)을 케이블 입구 플레이트의 개구부에 놓습니다.

그림 17 케이블 입구 플레이트

- 6. 케이블 차폐용 접지 클램프(4)를 제거하세요.
- 7. 케이블과 케이블 입구 플레이트를 드라이브 프레임의 그루브에 놓으세요.
- 8. 스트립 케이블을 연결하세요.
 - A. 3개 케이블 전체의 차폐를 노출시켜 케이블 차폐용 접지 클램프(4)와 360도로 연결하세요.
 - B. 주케이블(1)과 모터 케이블(3)의 상도체 및 브레이크 저항기 케이블(2)의 전도체를 적합한 터미널에 연결하세요.
 - C. 케이블 러그를 접지선 위에 밀착되게 구부리세요 (부속품 목록 참조). 각 케이블의 접지(5)를 접지 터미널에 부착하세요 (④).
 - D. 이중 접지가 필요한 경우, 외부 접지선(6)이 접지 바와 연결되어 있는지 확인하세요. 접지 및 지락 보호 챕터를 참조하세요.
 - E. 표 11 올바른 체결 토크를 참조하세요.
- 9. 접지선이 🕀로 식별되는 모터 터미널과 연결되어 있는지 확인하세요.
- 10. 케이블 덮개와 드라이브 덮개를 다시 부착합니다.

그림 18 터미널 케이블 접속

표	11	연결	체결	토크
---	----	----	----	----

프레임	체결 토크: 북 모터 케이컴	주케이블 및 블 터미널	체결 토크: 커 접지 클	이블 차폐용 클램프	체결 토크: 접지선용 케이블 러그	
	Nm	lb-in.	Nm	lb-in.	Nm	lb-in.
FR1	1	9	1.5	13.3	2.0	18
FR2	2	18	1.5	13.3	2.0	18
FR3	10	90	1.5	13.3	2.0	18
FR4 ~ FR6

1. 모터 케이블, 주전원 케이블 및 브레이크 저항기 케이블 피복을 벗기세요 (FR4 내부 옵션, FR5-FR6 외부 옵션).

표 12 케이블 피복 제거 길이 [mm/in]

프레임	Α	В	С	D	E	F	G
FR4	14 / 0.56	60 / 2.4	19 / 0.76	55 / 2.2	19 / 0.76	55 / 2.2	*
FR5	20 / 0.8	125 / 5**	25 / 1	175 / 6.9**	25 / 1	175 / 6.9**	*
FR6	20 / 0.8	125 / 5**	25 / 1	175 / 6.9**	25 / 1	175 / 6.9**	*

*G. 접지선. 모터 측은 가능한 한 짧게 합니다.

** FR5-6 IP20,

개방형: 값은 설치 파라미터에 따라 다르며, 그림 27~28를 참조하세요.

그림 19 PE 케이블 작업 방법

2. AC 드라이브 커버를 개방하시오.

- •밑면 주 커버
- 통신 케이블 클램프가 있는 주요 터미널 커버
- •케이블 입구 박스 덮개 (FR5-FR6 IP20)

그림 20 FR4 IP 20

그림 21 FR5 IP 20

그림 23 FR6 IP20

주전원, 브레이크 저항기 및 모터 터미널을 확인하세요.

3. 전체 케이블 끝을 케이블 러그(1)에 적합한 크기로 밀착시켜 구부립니다.

필요 시, 좁은 플랜지형 케이블 러그를 이용하세요. 절연 또는 수축 튜브(2)를 이용해 케이블 러그를 전기와 분리시키세요. 케이블 러그 최대 너비: FR4 17 mm FR5-6 30 mm

참조!

주의!

FR5-6: 한 터미널에 평행 케이블을 이용하는 경우, 케이블 러그를 차곡차곡 쌓으세요. 그림 19 부속품에 포함된 케이블 클램프가 허용하는 최대 케이블 지름 40mm를 참조하세요.

그림 27 FR5 케이블링 IP20

- 4. 케이블을 연결하세요.
 - 주케이블과 모터 케이블의 상도체를 올바른 터미널에 연결합니다. 브레이크 저항기 케이블을 사용하는 경우, 브레이크 저항기 케이블의 도체를 올바른 터미널에 연결합니다.
 - 각 케이블의 접지선을 접지 터미널에 부착하세요.
 - 외부 접지선이 계통 접지 바와 연결되어 있는지 확인하세요.

보호선을 외부 접지 터미널 1개와 연결하세요. 접지 및 지락 보호 챕터를 참조하세요.

- 표 13 올바른 체결 토크를 참조하세요.
- 5. 3개 케이블 전체의 차폐를 노출시켜 케이블 차폐용 접지 클램프(3)와 360도로 연결하세요.
- 6. 통신 케이블 클램프가 있는 주 터미널 덮개와 케이블 입력 박스 덮개 (FR5-FR6 IP20 / 유형 1 버전에 한함)를 다시 부착합니다.
- 제어 장치 케이블을 설치하지 않는 경우에는 주요 덮개 바닥면을 다시 부착하세요. 그렇지 않은 경우 제어 장치 케이블링 챕터를 참조하세요.
- 8. 접지선이 🕀로 식별되는 모터 및 터미널과도 연결되어 있는지 확인하세요.

표 13 연결 체결 토크

프레임	체결 토크: 주케이 케이블 터	체결 토크: 케이블 차폐용 접지 클램프		체결 토크: 접지선용 케이블 러그		
	[Nm]	lb-in.	[Nm]	lb-in.	[Nm]	lb-in.
FR4	3	26	1.5	13	5	44
FR5	30	265	2	18	15	132
FR6	30	265	2	18	15	132

FR5-6 개방형은 반드시 전기 충격을 보호해 주는 캐비닛 또는 인클로저 내부에 설치하여 드라이브 충전부와 직접적으로 접촉하지 않도록 합니다. 인클로저가 물, 습도, 먼지 및 기타 오염에 대해 보호 기능을 제공하는지 확인하세요. 설치 준비 시, 현지 규정을 준수합니다. 적절한 접지 설치와 관련해서는 *접지 및 지락 보호* 챕터를 참조하세요.

⁄ 1

/ 2

- 3

Ø

⊗

0

- 1. 케이블 러그
- 2. 수축 튜브
- 3. 케이블 차폐용 접지 클램프
- 4. 케이블 내부 접지 터미널
- 5. 외부 접지 터미널
- 6. 주케이블
- 7. 모터 케이블
- 8. 제어 케이블
- 9. 접지선

0

ً⊗

⊛

4

0

00

0 III 0

- 10. 풀 릴리프(Pull Relief)
- 11. 보호 접지 부스바

그림 159 캐비닛 접지 부스바를 이용한 케이블 설치

그림 30 내부 접지 터미널을 이용한 케이블 설치

8888

00000

⊛

5

0

0

코너 접지 네트워크 내 설치

- 1. 코너 접지 망에는 HiD500-3L-...-2 시리즈 드라이브 (FR1 ~ FR6, 주전압 208~240V)를 이용할 수 있습니다.
- 코너 접지 망에는 HiD500-3L-....-5 시리즈 드라이브 (FR1 ~ FR6, 주전압 380~500V)를 이용할 수 있습니다. 이 경우, EMC 보호 레벨을 EMC 점퍼 (점퍼 1-2)를 제거하여 C4까지 변경해야 합니다. 그렇지 않으면 시스템이 EMC 필터 캐패시터를 통해 대지 전위에 연결됩니다. 이로 인해 드라이브가 손상됩니다.

*IT 시스템 내 설치*의 지시사항을 참조하세요.

IT 시스템 내 설치

주전원이 IT 시스템인 경우, AC 드라이브는 EMC 보호 레벨이 반드시 C4여야 합니다. 드라이브 EMC 보호 레벨이 C2 또는 C3인 경우, C4로 변경해야 합니다. EMC 점퍼를 제거해 변경하세요. IT 시스템 내 C4 설정한 제품의 경우, 최대 스위칭 주파수는 기본값 2kHz로 제한됩니다.

경고!

AC 드라이브가 주전원과 연결되어 있는 경우에는 변경하지 마세요. 드라이브가 주전원과 연결되어 있으면 드라이브 부품에 전기가 흐릅니다.

주의!

드라이브의 EMC 레벨이 정확한지 확인한 후 AC 드라이브를 주전원에 연결하세요. EMC 레벨이 정확하지 않으면 드라이브 손상을 야기할 수 있습니다. FR1 ~ FR6 EMC 점퍼

AC 드라이브 EMC 보호를 C4 단계로 변경하세요.

- 1. AC 드라이브 커버를 개방하세요.
- 2. FR1, FR2 및 FR3에서 케이블 커버를 제거하세요. FR4, FR5 및 FR6에서 점퍼 덮개 부품을 제거하세요.
- 3. RFI 필터를 지면과 연결하는 EMC 커넥터를 찾으세요.

그림 33 FR3 EMC 커넥터 (M4 메탈 스페이서) 그림 34 FR4 EMC 커넥터

- 4. RFI 필터를 지면에서 분리하려면 도구를 이용해 EMC 커넥터를 제거하세요.
- 변경 후에는 "제품 수정" 라벨에 "EMC 레벨 변경됨"이라는 문구와 날짜를 기입하세요. 이 때 라벨이 부탁되어 있지 않으면 명판 근처 드라이브에 라벨을 부착합니다.
- 6. 점퍼 커버를 다시 덮으세요.

제어 장치

제어 장치 부품

AC 드라이브의 제어 장치는 주제어 보드 및 옵션 보드를 포함합니다. 옵션 보드는 제어 보드의 슬롯과 연결됩니다.

- A. 표준 I/O 연결용 제어 터미널
- B. Ethernet 연결
- C. 릴레이 출력 (2개)용 릴레이 터미널
- D. RS485 터미널
- E. RS485 버스 종단용 점퍼
- F. STO(Safe Torque Off) 점퍼 연결 위치 및 기본 위치
- G. 옵션 보드

AC 드라이브 제어 장치는 표준 제어 인터페이스를 포함합니다. 옵션 보드를 적용해 기능을 확장할 수 있습니다. 자세한 지시사항은 현지 현대 대리인에게 문의하세요. 다음 장에는 표준 터미널 정보 및 일반 배선 관련 예시를 볼 수 있습니다. HMI 키패드

HMI 키패드(1)는 위쪽 가장자리에서 앞방향으로 끌어 당겨 제거하고 반대 순으로 다시 설치할 수 있습니다. 내부 커넥터(2)를 제거하지 마세요.

드라이브 상태 LED(3)는 드라이브의 상태를 나타냅니다. 상태 LED는 키패드 아래 제어 패널에 위치하며, 3가지 각기 다른 상태를 나타낼 수 있습니다.

표 14 드라이브 상태 LED의 상태

LED 라이트 색상	드라이브 상태
녹색 점멸	준비 / 정지
녹색	운전 중
적색	폴트

제어 장치 케이블링

표준 I/O 보드에는 고정 제어 터미널 24개와 릴레이 터미널 6개가 있습니다. 표 23과 *제어 연결에 관한 기술 데이터* 챕터에서 제어 장치의 표준 연결과 신호 설명을 보실 수 있습니다.

제어 케이블 선택

제어 케이블은 지름 최소 0.5mm²의 다심 차폐 케이블이어야 합니다. 케이블 유형에 관한 보다 자세한 내용은 *표 13 올바른 케이블 선택*을 참조하세요. 터미널 와이어는 최대 지름이 1.5 mm² 이거나, 릴레이 터미널 및 기타 터미널의 경우 AWG14여야 합니다.

표 15 제어 케이블 체결 토크

cialit		체결 토크		
더미걸	더미걸 나자	Nm	lb-in.	
I/O 보드 및 릴레이 보드의 전체 터미널	M3	0.5	4.5	

제어 터미널

다음은 표준 I/O 보드의 터미널에 관해 기본적인 내용을 설명한 표입니다. 보다 자세한 정보는 *제어 연결에 관한 기술 데이터* 챕터를 참조하세요.

표 16 터미널 배치 설명

	단자대		L.	서며 미 기법 서저	
번호	이름	<u>ן</u> א	0	실명 및 기존 실정	
8	+10Va	+10V 기준 전압	출력	주파수 up/down 1 ~ 10kΩ	
9	AIV	전압 아날로그 입	력	주파수 지령	
10	GNDa	아날로그 그라운.			
11	AIC	전류 아날로그 입	력	주파수 지령	
19	-10Va	-10V 기준 전압 普	출력		
20	AOV	전압 아날로그 출	력	출력 주파수 모니터	
21	GNDa	아날로그 그라운.			
22	AOC	전류 아날로그 출	·력	출력 전류 모니터	
1	CM1	I/O 그라운드			
3	P24	24V 보조 전원			
15	DI1	디지털 입력 1		정방향 기동	
16	DI2	디지털 입력 2		역방향 기동	
17	DI3	디지털 입력 3		외부 고장	
18	DI4	디지털 입력 4		고장 리셋	
12	CM1	I/O 그라운드			
13	PLC	디지털 전원 공통	· 단자		
14	P24	24V 보조 전원			
4	DI5	디지털 입력 5		다단속 0	
5	DI6	디지털 입력 6		다단속 1	
6	DI7	디지털 입력 7		램프1/램프2 선택	
7	DI8	디지털 입력 8		긴급 제동	
2	DO	오픈 콜렉터 출력		READY	
R3	RO1 NC				
R2	RO2 CM		딜레이 ᄎᇘ 1	RUN	
R1	RO1 NO		굴덕 1		
F3	RO2 NC				
F2	RO2 CM		딜레이 ᄎᆰ 2	FAULT	
F1	RO2 NO		물덕 2		
В	485(+)	시리얼 통신 (+)		MODBUS-RTU	
А	485(-)	시리얼 통신 (-)			
	RJ45 (ETH)	Ethernet		PC Tool	

제어 연결에 관한 기술 데이터

표 1 7	표준 I/O 보드	Ē			
구분		단자기호	기능		사양
주	입력	L1, L2, L3	3상 220/440V	' 입력 단자	
회	출력	R+,R-	제동 저항 연결	<u>a</u>	FR1 ~ FR4
로		DC-, DC+	DC 연결 단자		전 프레임
		U, V, W	3상 220/440V	' 입력 단자	
보	릴레이	RO1 NO/CM/NC	기동 정지용	Normal Open / Common /	230VAC/30VDC
조	출력	RO2 NO/CM/NC	트립용	Normal Close	2A
회	보조전원	P24 (3, 14)	24V 보조 전원	<u>!</u> (+)	24V ± 10%
로		CM1 (1, 12)	24V 보조 전원	4 (-)	Max. 150mA
	디지털	DI1 (15), DI2 (16)	CM1 – PLC (소	노트바 체결, 공장 출하)	
	입력	DI3 (17), DI4 (18)	: 소스 타입		
		DI5 (4), DI6 (5)	PLC – P24 (쇼	트바 체결) : 싱크 타입	
		DI7 (6), DI8 (7)			
	디지털	DO(2)	Open Collecto	or 출력 제공	~30VDC
	출력				Max. 10mA
	디지털	PLC (13)	디지털 전원 공	공통 단자	
	그라운드				
	아날로그	+10Va(8),	±10V 아날로.	그 전원 제공	Max. 100mA
	전원	-10Va(19),	아날로그 그리	운드	
		GNDa (10,21)			
	아날로그	AIV (9)	전압 입력		-10 ~ +10V
	입력	AIC (11)	전류 입력		(0) 4 ~ 20mA
	아날로그	AOV (20)	전압 출력		0 ~ +10V
	출력	AOC (22)	전류 출력		(0) 4 ~ 20mA
	통신	485- (A), 485+ (B)	485 통신		
		RJ45 (ETH)	Ethernet 통신		

시운전 및 추가 지시사항

시운전 안전

시운전에 앞서 다음 경고를 읽으세요.

경고!

드라이브가 주전원에 연결되어 있을 때에는 드라이브의 내부 부품이나 회로 보드를 만지지 마세요. 이들 부품에는 전기가 흐릅니다. 해당 전압과 접촉 시 매우 위험합니다. 갈바닉 절연된 제어 터미널은 전기가 흐르지 않습니다.

경고!

드라이브가 주전원에 연결되어 있을 때에는 모터 케이블 터미널 U, V 및 W, 브레이크 저항기 터미널, 또는 DC 터미널을 만지지 마세요. 드라이브가 주전원에 연결되어 있을 때 외에도 모터가 작동하지 않을 때에도 이들 터미널에 전기가 흐릅니다.

경고!

AC 드라이브가 주전원에 연결되어 있을 때에는 AC 드라이브를 연결하지 마세요. 위험 수준의 전압이 흐르고 있습니다.

경고!

드라이브 연결 작업을 할 때에는 드라이브를 주전원에서 분리하세요. 5분 정도 기다린 후 드라이브 덮개를 여세요. 그런 다음 측정 장치를 이용해 전압이 없는지 확인합니다. 드라이브가 주전원과 분리된 후에도 5분 간 연결이 지속됩니다.

경고!

전기 작업을 할 때에는 전압이 흐르지 않는지 확인하세요.

경고!

제어 터미널을 만지지 마세요. 드라이브가 주전원에서 분리된 경우에도 위험 수준의 전압이 흐를 수 있습니다.

경고!

드라이브의 앞면 덮개와 케이블 덮개가 닫혀 있는지 확인한 후 드라이브를 주전원에 연결하세요. 드라이브가 주전원과 연결되어 있으면 AC 드라이브 부품에 전기가 흐릅니다.

드라이브 시운전

안전 및 시운전 안전 챕터의 안전 지침을 읽고 준수합니다.

설치 후:

- 모터가 올바르게 설치되었는지 확인하세요.
- 모터 터미널이 주전원에 연결되어 있지 않은지 확인하세요.
- AC 드라이브와 모터가 접지되어 있는지 확인하세요.

• 주케이블, 브레이크 케이블 및 모터 케이블을 올바르게 선택했는지 확인하세요 (케이블 치수 및 선택 챕터 참조).

- 제어 케이블이 가능한 한 전원 케이블에 멀리 떨어져 있는지 확인하세요. 케이블 설치 챕터를 참조하세요.
- 차폐 케이블의 차폐가 🕀로 구분되는 접지 터미널에 연결되어 있는지 확인하세요.
- 모든 터미널의 체결 토크를 확인하세요.
- 전원 보정 캐패시터가 모터 케이블에 연결되지 않았는지 확인하세요.
- 케이블이 드라이브의 전기 부품과 닿지 않는지 확인하세요.
- 디지털 입력 그룹의 공통 입력이 제어 장치의 +24V 또는 접지 출력이나 외부 전원 소스 +24V 또는 접지에 연결되어 있는지 확인하세요.
- 냉각 공기의 질과 양을 확인하세요. 냉각 요건 챕터를 참조하세요.
- AC 드라이브 내부 표면에 응결이 없는지 확인하세요.
- 설치 공간에 원치 않는 물건이 없는지 확인하세요.
- 모든 퓨즈 및 기타 보호 장치의 설치 및 상태를 확인한 후, 드라이브를 주전원에 연결하세요.

모터 운용

모터 시동 전 확인 사항

모터 시동에 앞서 다음 사항을 확인하세요.

• 제어 터미널에 연결되어 있는 모든 시동 및 정지 스위치가 정지 위치에 있는지 확인한 후 드라이브를 주전원에 연결하세요.

- 주전원 및 모터 측 있는 상순서가 정확한지 확인하세요.
- 안전하게 모터를 시동할 수 있는지, 위험한 곳에 있는 사람이 없는지 확인하세요.
- 스타트업 마법사를 활성화하세요. 보유 중인 AC 드라이브에 대해서는 애플리케이션 매뉴얼을 참조하세요.
- 최대 기준 주파수 (즉, 최대 모터 속도)을 설정해 모터 및 모터에 연결된 장치와 일치시킵니다.

케이블 및 모터 절연 측정

필요 시 다음 사항을 확인하세요.

모터 케이블 절연 확인 사항

- 1. 모터 케이블을 터미널 U, V 및 W와 모터에서 분리하세요.
- 2. 상도체 1과 2 사이, 상도체 1과 3 사이, 상도체 2와 3 사이 모터 케이블의 절연 저항을 측정하세요.
- 3. 각 상도체 및 접지선 간 절연 저항을 측정하세요.
- 4. 절연 저항은 주위 온도 20°C (68°F)에서 반드시 1MΩ보다 높아야 합니다.

주케이블 절연 확인 사항

- 1. 주케이블을 터미널 L1, L2 및 L3과 주전원에서 분리하세요.
- 2. 상도체 1과 2 사이, 상도체 1과 3 사이, 상도체 2와 3 사이 주케이블의 절연 저항을 측정하세요.
- 3. 각 상도체 및 접지선 간 절연 저항을 측정하세요.
- 4. 절연 저항은 주위 온도 20°C (68°F)에서 반드시 1MΩ보다 높아야 합니다.

모터 절연 확인 사항

- 1. 모터 케이블을 모터에서 분리하세요.
- 2. 모터 연결 박스에서 브리지 연결을 분리하세요.
- 각 모터 권선기의 절연 저항을 측정하세요. 인가 전압은 반드시 모터 정격 전압과 같거나 높아야 하지만 1,000V를 초과해서는 안됩니다.
- 4. 절연 저항은 주위 온도 20°C (68°F)에서 반드시 1MΩ보다 높아야 합니다.
- 5. 모터 제조사의 지침을 따르세요.

사용자 인터페이스

각 인버터마다 조작 패널(HMI 키패드) 이 설치되고 및 소프트웨어 툴(HIMS, 현대 인버터 관리 시스템)이 제공되고 있습니다.(<u>www.hyundai-electric.com</u>) 조작 패널 및 소프트웨어 툴은 권장 인터페이스로, 장치의 전체 수명 주기 (시운전, 조작, 문제 해결 및 유지보수 등 일반 프로세스)에 걸쳐 사용됩니다.

179. 그림: HMI 키패드 (제어 패널 & 그래픽 디스플레이)

Hyundai Inverter Monitoring System										- 0 X
	File Edit View Drive Toc	ols Help	٥				/▲ HYU	INDA	I EL	ECTRIC
	Parameter Browser 🛛 Monitoring) 🖂 🛛 Fa	ult diagno	stics 📧 🛛 Recorder 📧 🛛 User Set 0 💌						
	Go Online 🛛 Go Offline 🔲 📥 🏻	<u>6</u> 🖻 (} ≡	==000 0 ₿ ₽	🕐 🛃 Load defaults Search	C	2			
	3.1.3. MotorLimitSe 🔺	Index	ID	VariableText	Value	Min	Default	Max	Unit	Explanation *
	4 3.1.4. OpenLoopSet 2.1.4.1. OpenLo	2.3.12	124	MotorPreheat	OFF PH	N/A	OFF PH	N/A		Monitor
	3.1.4.2. IfStart	2.3.13	125	TorqueReference	0.00	0.00	0.00	0.00	%	Monitor
	3.1.4.3. Stabilate		xuu	and a choice of the	0.00	0.00	0.00	0.00		
FILES	 3.3. References 	2.4. 10 (/)								
parameter_browser 🗙	3.3.1. FrequencyRef	2.4.1.	127	DIN_1_2_3_4	0	0	0	0		Monitor
	3.3.2. TorqueKererer 3.3.3. TorqueContro	2.4.2.	128	DIN_5_6_7_8	0	0	0	0		Monitor
	3.3.4. PresetFrequer	243	129	801 802 001	4	0	0	0		Monitor
	3.3.5. MotorPotenti 3.3.6. JovstickContre	244	100	Andrewat		0.00	0.00	0.00	0/	Advertised.
	3.3.7. JoggingParam	2.4.4.	130	Analoginputi	0.01	0.00	0.00	0.00	%	Monitor
	3.4. RampsAndBrakesSe 2.4.1. RampsParame	2.4.5.	131	AnalogInput2	-0.00	0.00	0.00	0.00	%	Monitor
	3.4.2. BrakesParame	2.4.6.	132	AnalogOutput1	0.00	0.00	0.00	0.00	%	Monitor
/e	4 3.5. IOConfiguration	2.4.7.	133	AnalogOutput2	0.00	0.00	0.00	0.00	%	Monitor
Control place	 3.5.1. Digitalinputs 3.5.2. AnalogInputs 	2.5. To ma		and Manifestine (6)						
Motor direction	3.5.2.1. Analogli	z.s. temp	eraturen	putsionitoring (6)						
Ottline Ottline	3.5.2.2. Analogii 3.5.2.3. Analogii	2.5.1.	135	TemperatureInput1	0.00	0.00	0.00	0.00	°C	Monitor
Ready -	3.5.2.4. Analogi	2.5.2.	136	TemperatureInput2	0.00	0.00	0.00	0.00	°C	Monitor
Fault 👄	3.5.2.5. Analogli	2.5.3.	137	TemperatureInput3	0.00	0.00	0.00	0.00	°C	Monitor
Run 🔵	 3.5.2.0. Analogi 3.5.3. DigitalOutput 	254	100		0.00	0.00	0.00	0.00		
Alarm	3.5.3.1. RO1	2.5.4.	158	lemperatureinput4	0.00	0.00	0.00	0.00	·C	Monitor
⊗ 3	3.5.3.2. RO2 3.5.3.3 DO1	2.5.5.	139	TemperatureInput5	0.00	0.00	0.00	0.00	•C	Monitor
	 3.5.4. AnalogOutpu 	2.5.6.	140	TemperatureInput6	0.00	0.00	0.00	0.00	*C	Monitor
PC Control	3.5.4.1. AO1	2.6. Extra	AndAdva	nced (12)						
Chart Chan	3.6. FieldbusDataMappi	261	142	DriveStatur/Word	22	0	٥	0		Monitor
Start	3.7. ProhibitFrequencies	2.0.1.	142	Divestatusword	33	v	v	U		wontol
	 3.9. Protections 	2.6.2.	143	ReadyStatus	127	0	0	0		Monitor
0,00 Hz <u>39,00</u> %	3.9.1. GeneralProtec	2.6.3.	144	ApplicationStatusWord	17155	0	0	0		Monitor
neset Coast stop 🗹 Heverse	3.9.2. MotorTherma 3.9.3. MotorStallPro	2.6.4.	145	ApplicationStatusWord2	1	0	0	0		Monitor
1	4 20 4 Makad and Der	265	146	DINStatusWord1	0	0	0	0		Monitor -
									_	

40. 그림: HIMS(현대 인버터 관리 시스템) 소프트웨어 툴

HIMS(현대 인버터 모니터링 소프트웨어)

HIMS 소프트웨어 툴은 권장 인터페이스로, 장치의 전체 수명 주기 (시운전, 조작, 문제 해결 및 유지보수 등 일반 프로세스)에 걸쳐 사용됩니다.

참조!

시리얼 및 Ethernet 물리 계층을 모두 인버터와 연결하는 데 이용할 수 있습니다

참조!

HIMS는 파라미터의 백업, 복구 및 배포를 편리하게 합니다.

참조!

HIMS를 이용해 인버터 펌웨어 업데이트 프로세스를 시작할 수 있습니다.

참조!

시운전, 문제 해결 및 유지보수를 위한 기록 장치 및 모니터링 기능

HMI 키패드

모든 인버터에는 작동, 파라미터 사용 및 정보 표시를 직관적으로 제어할 수 있도록 특별히 설계된 사용하기 쉽고 인체공학적인 HMI 키패드가 사전 설치되어 출고됩니다.

41. 그림: HMI 키패드 (제어 패널 & 그래픽 디스플레이)

형상	기능	설명
<u>BACK</u> RESET	뒤로 가기/리셋	메뉴 뒤로 가기, 편집 종료, 폴트 리셋
FUNCT	기능	회전방향 변경, 제어페이지 접근
	위	상방 스크롤, 입력값 증가
	아래	하방 스크롤, 입력값 감소
	왼쪽	커서 좌측 이동
	오른쪽	커서 우측 이동
\diamond	시작	기동 버튼
	정지	정지 버튼
ОК	ОК	메뉴 입력 확정, 아이템 선택, 선택 확정
LOCAL REMOTE	로컬/원격	제어 입력 변경
?	물음표	도움말
-	LED (표시등)	 ➡ 녹색 점멸 : 준비/정지, ■ 녹색 점등 : 운전 중 ■ 적색 점등 : 폴트

18. 표: 제어 패널 버튼의 명시와 역할

F1	F2	F3	F4	F5	
	<mark>- 주 메뉴</mark> ID M				
\star	즐겨 (10	찾기 파라미터)			
	디스	플레이 <mark>F</mark> 6	i		
	(12) F7			
	고급	설정			
	(54)			

42. 그림: 그래픽 디스플레이 레이아웃

구역	기능	설명					
F1	기동/정지 (상태)	인버터 기동/정지					
52	회전 바하 (사대)	모터 회전 방향 표시					
F2	외선 망양 (상대)	🤇 시계방향 💭 반시계방향					
F3	준비 (상태)	준비/준비되지 않음/고장.					
F4	알람 (상태)	알람/무알람(표시 없음)					
66	게이 이치 (사대)	제어방법표시					
ГЭ	세어 취지 (경대)	PC/IO/키패드/필드버스					
F6	메뉴 또는 파라미터명	메뉴 / 파라미터 명					
F7	항목 수	하부 메뉴 개수 표시					
ID	파라미터 (기준)	선택된 파라미터의 ID 표시					
М	메뉴 (기준)	선택된 메뉴 ID 표시					

19. 표: 그래픽 디스플레이 아이콘의 명시와 역할

8

45. 그림: 메뉴 구조상 현재 위치 참조

메뉴 구조에서 **현재 위치**는 항상 **메뉴 ID**로 볼 수 있습니다. 예를 들어 "F.2"의 경우, "F"는 "즐겨찾기 파라미터 (퀵 & 마법사)" 주 메뉴를, "2"는 두 번째 하위 메뉴 ("기본 파라미터")를 의미합니다. **현재 메뉴 수준의 이름** 또한 화면에 표시됩니다. 예를 들어, "기본 파라미터"는 위 기술한 특별한 경우를

"BACK/RESET" 버튼을 누르면 하위 메뉴에서 주 메뉴로 되돌아갑니다.

43. 그림: 메뉴 항목 선택에 이용되는 버튼

HMI 키패드 탐색 파라미터와 모니터링한 변수들을 주 메뉴 및 하위 메뉴로 그룹화했습니다. **"▲/▼" 버튼**으로 메뉴 구조의 실제 수준을 탐색해 보세요. **OK 버튼**을 누르면 주 메뉴에서 선택한 하위 메뉴로 이동합니다. HMI 키패드를 이용한 고장 리셋하기

"BACK/RESET" 버튼을 최소 2초 이상 누르면 고장을 리셋할 수 있습니다.

46. 그림: 고장 리셋 시 필요한 버튼

HMI 키패드를 이용한 파라미터 값 편집하기

파라미터의 목적에 따라, 파라미터 값을 편집할 때, 즉, 수치 파라미터 값 편집, 열거형 파라미터 값 편집, 체크박스 편집 시 여러 절차를 거쳐 파라미터를 편집할 수도 있습니다.

파라미터 숫자값 편집하기

단계	지시사항	상세 설명
		OK 버튼을 두 번(2회) 누르거나 오른쪽
1단계	파라미터 편집 모드로 진입	버튼을 한 번(1회)눌러 선택한 파라미터에
		대한 편집 모드로 들어갑니다.
고다게	편지하 수지 서태	왼쪽/오른쪽 버튼으로 편집할 숫자를
2번계	· 편집일 숫자 신택	선택합니다.
2 드 나게	비크이가 서저	위 버튼으로 선택한 숫자값을 증가시키고
5번세	세도군 없 열정	아래 버튼으로 값을 감소시킵니다.
4고드노케	ᄖᄸᄮᅕᇈᅕ	"BACK/RESET" 버튼을 눌러 변경 사항을
40 긴 게	· 변경 사항 귀조	취소합니다.
4b단계	버거 나하 스라	OK 버튼을 한 번(1회) 눌러 변경 사항을
	[변경 작왕 구덕	수락합니다.

20. 표: 수치 파라미터 편집에 필요한 단계

참조!

수치값을 포함하고 있는 파라미터의 경우, 범위의 하한값과 상한값이 디스플레이 왼쪽 하단 코너에 표시됩니다.

47. 그림: 편집 값 및 수치 범위의 최소, 최대값

파라미터 열거값 편집하기

단계	지시사항	상세 설명
		OK 버튼을 두 번(2회) 누르거나 오른쪽
1단계	파라미터 편집 모드로 진입	버튼을 한 번(1회)눌러 선택한 파라미터에
		대한 편집 모드로 들어갑니다.
		"▲/▼" 버튼을 이용해 원하는 파라미터 값에
		해당하는 텍스트를 선택합니다.
2단계	새로운 값 설정	Fieldbus Control
3a단계	변경 사항 취소	"BACK/RESET" 버튼을 눌러 변경 사항을
		취소합니다.
3b단계	변경 사항 수락	OK 버튼을 한 번(1회) 눌러 변경 사항을 수락합니다.

21. 표: 열거 파라미터 편집에 필요한 단계

제어 위치 선택 - 로컬/원격 버튼

제어 위치는 로컬/원격 버튼을 이용하면 편리하고 빠르게 변경할 수 있습니다.

단계	지시사항	상세 설명
1단계	제어 위치 선택 페이지를 진입	"LOCAL/REMOTE" 버튼을 누릅니다.
		"▲/▼" 버튼을 이용해 원하는 파라미터 값에
		해당하는 텍스트를 선택합니다.
2단계	새로운 값을 설정	
		1
		<u>Remote</u>
3a단계	변경 사항 취소	"BACK/RESET" 버튼을 눌러 변경 사항을
		취소합니다.
3b단계	변경 사항 수락	OK 버튼을 한 번(1회) 눌러 변경 사항을
		수락합니다.

22. 표: 로컬/원격 버튼으로 제어 위치를 변경하는 데 필요한 단계

참조!

로컬/원격 버튼으로 초기화된 수정 사항을 수락 또는 취소한 후에는 디스플레이가 버튼을 누르기 전 보여준 메뉴 위치로 다시 전환됩니다.

참조!

실제 유효한 제어 위치는 항상 디스플레이 오른쪽 상단 코너에서 볼 수 있습니다 (F5 섹션). HMI 키패드 FUNCT 버튼(단축키)

참조!

단축 페이지에서 수정한 내용을 수락 또는 취소한 후에는 디스플레이가 기능(단축키) 버튼을 누르기 전 보여준 메뉴 위치로 다시 전환됩니다.

제어 페이지 표시하기

자주 사용하는 모니터링 정보는 제어 페이지에 빠르고 편리하게 표시됩니다.

단계	지시사항	상세 설명
1단계	단축키 페이지 열기	메뉴 구조상 실제 위치와는 상관 없이 "FUNCT" 버튼을 누릅니다.
2단계	제어 페이지를 선택	"▲/▼" 버튼을 이용해 텍스트를 선택합니다.
3단계	제어 페이지를 표시	OK 버튼을 두 번(2회) 누르거나 오른쪽 버튼을 한 번(1회)눌러 제어 페이지를 표시합니다.
4단계	제어 페이지를 종료.	"BACK/RESET" 버튼을 눌러 제어 페이지를 닫습니다.

23. 표: 제어 페이지를 표시하는 데 필요한 단계

제어 페이지는 유효한 기준 주파수의 실제값을 항상 표시합니다.

참조!

멀티 모니터 메뉴 내에서 표시된 모니터링 정보 목록을 바꿀 수 있습니다.

키패드 기준 주파수 변경하기

키패드 제어 위치를 활성화한 채로 *키패드 기준 주파수를* 제어 페이지 내에서 편리하고 빠르게 편집할 수 있습니다.

참조!

키패드 제어 위치를 활성화해야 제어 페이지에서 기준 주파수를 변경할 수 있습니다. 그 외에는 기준 주파수값을 읽기 전용으로 보기만 가능합니다!

단계	지시사항	상세 설명
1단계	기준 주파수 라벨을 선택하고 파라미터 편집 모드로 진입	OK 버튼을 두 번(2회) 누르거나 오른쪽 버튼을 한 번(1회)눌러 선택한 파라미터에 대한 편집 모드로 들어갑니다.
2단계	편집할 숫자를 선택	왼쪽/오른쪽 버튼으로 편집할 숫자를 선택합니다.
3단계	새로운 값 설정	위 버튼으로 선택한 숫자값을 증가시키고 아래 버튼으로 값을 감소시킵니다.
4a단계	변경 사항 취소	"BACK/RESET" 버튼을 눌러 변경 사항을 취소합니다.
4b단계	변경 사항 수락	OK 버튼을 한 번(1회) 눌러 변경 사항을 수락합니다.

24. 표: 제어 페이지에서 키패드 기준 주파수 변경에 필요한 단계

회전 방향 변경하기

참조!

단축키 버튼을 이용하면 빠르고 편리하게 회전 방향을 변경할 수 있습니다.

키패드 제어 위치를 활성화해야 제어 페이지에서 회전 방향을 변경할 수 있습니다. 그 외에는 회전 방향을 읽기 전용으로 보기만 가능합니다!

단계	지시사항	상세 설명
		메뉴 구조상 실제 위치와는 상관 없이
1단계	단축키 페이지 열기	"FUNCT" 버튼을 누릅니다.
2단계	방향 변경을 선택	"▲/▼" 버튼을 이용해 텍스트를 선택합니다.
		OK 버튼을 두 번(2회) 누르거나 오른쪽
3단계	파라미터 편집 모드로 진입	버튼을 한 번(1회)눌러 선택한 파라미터에
		대한 편집 모드로 들어갑니다.
	새로운 값을 설정	"▲/▼" 버튼을 이용해 원하는 파라미터 값에
		해당하는 텍스트를 선택합니다.
4단계		
		Reverse Forward
	변경 사항 취소	"BACK/RESET" 버튼을 눌러 변경 사항을
5a단계		취소합니다.
		이는 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이
5b단계	변경 사항 수락	수락합니다.

25. 표: 단축키 버튼으로 회전 방향을 전환하는 데 필요한 단계

참조!

파라미터 편집 모드에 들어가면 실제 회전 방향이 강조 표시됩니다.

신속하게 파라미터 편집하기

빠른 편집 기능은 고유 파라미터 ID를 바탕으로 값을 편집하는 데 파라미터를 선택하는 인터페이스를 제공합니다.

단계	지시사항	상세 설명
		메뉴 구조상 실제 위치와는 상관 없이
1단계	단축키 페이지 열기	기능(단축키) 버튼을 누릅니다.
2단계	빠른 편집을 선택	"▲/▼" 버튼을 이용해 텍스트를 선택합니다.
	빠른 편집 페이지를 표시	OK 버튼을 두 번(2회) 누르거나 오른쪽
3단계		버튼을 한 번(1회)눌러 빠른 편집 페이지를
		표시합니다.
4단계	새로운 값 설정	위 버튼으로 선택한 숫자값을 증가시키고
		아래 버튼으로 값을 감소시킵니다.
5단계	제어 페이지 닫기	"BACK/RESET" 버튼을 눌러 제어 페이지를
		닫습니다.
6단계	변경 사항 수락	OK 버튼을 한 번(1회) 눌러 변경 사항을
		수락합니다.

26. 표: 빠른 파라미터 편집에 필요한 단계

도움말 텍스트 표시

단계	지시사항	상세 설명
1단계	항목 선택	도움말 정보가 필요한 파라미터나 모니터링한 값이 위치를 착습니다
2단계	상황에 맞는 메뉴로 진입	OK 버튼을 누릅니다.
2단계	원하는 명령을 선택	"▲/▼" 버튼을 이용해 텍스트를 선택합니다. ⑧ Edit ● Help ○ Mark as Favorite
3a단계	텍스트 창을 열기.	OK 버튼을 한 번(1회) 눌러 도움말 텍스트를 엽니다. A more detailed description of the parameter or monitored value is indicated in the HELP text window.
3b단계	텍스트 창을 닫기	"BACK/RESET" 버튼을 눌러 도움말 텍스트 창을 닫습니다.

27. 표: 도움말 텍스트 표시에 필요한 단계

파라미터 관리

주어진 인버터에서 파라미터 세트를 내보내고 HMI 키패드를 전송하며 내보낸 파라미터 세트를 하나 이상의 다른 인버터로 불러오기하는 데 파라미터 관리를 활용할 수 있습니다.

파라미터 관리 기능은 인버터가 정지 상태일 경우에만 이용 가능합니다!

i

참조!

참조!

파라미터 관리 관련 파라미터는 고급 설정 그룹₩파라미터 관리 메뉴 위치에 있습니다.

파라미터 내보내기

단계	지시사항	상세 설명
1단계	메뉴 구조에서 항목 찾기	고급 설정 그룹₩파라미터 관리로 이동합니다.
2단계	내보내기 하는 목적지를 선택	"▲/▼" 버튼을 이용해 텍스트를 선택합니다.
		- 키패드에 저장합니다.
		- (파라미터) 세트 1에 저장합니다.
		- (파라미터) 세트 1로 내보내기 합니다.
3단계	파라미터 내보내기	OK 버튼을 한 번(1회) 눌러 파라미터를
		내보내기 합니다.

28. 표: 파라미터 내보내기에 필요한 단계

파라미터 불러오기

단계	지시사항	상세 설명
1단계	메뉴 구조에서 항목 찾기	고급 설정 그룹₩파라미터 관리로 이동합니다.
	불러오기 할 소스를 선택	"▲/▼" 버튼을 이용해 텍스트를 선택합니다.
		- 키패드에서 복구합니다.
2단계		- 세트 1에서 복구합니다.
		- 세트 2에서 복구합니다.
		- 기본값을 복구합니다.
3단계	파라미터 불러오기	OK 버튼을 한 번(1회) 눌러 파라미터를 불러오기 합니다.

29. 표: 파라미터 불러오기에 필요한 단계

기본값 파라미터 복구하기

참조!

파라미터 값을 기본값으로 복구하려면 파라미터를 불러오기 할 때 소스로 기본값을 선택하세요.

참조!

인버터 제어 패널을 크기가 다른 인버터의 제어 패널로 교체하는 경우, 이들 파라미터의 값은 변하지 않습니다.

- 모터 정격 출력 (ID 116)
- 모터 정격 전압 (ID 110)
- 모터 정격 주파수 (ID 111)
- 모터 정격 속도 (ID 112)
- 모터 정격 전류 (ID 113)
- 모터 정격 역률 (ID 120)
- 스위칭 주파수 (ID 601)
- 모터 전류 제한 (ID 107)
- 스톨 전류 (ID 710)
- 최대 기준 주파수 (ID 102)
- 약계자점 주파수 (ID 602)
- U/f 중간점 주파수 (ID 604)
- 제로 주파수 전압 (ID 606)
- 기동 자화 전류 (ID 517)

- DC 브레이크 전류 (ID 507)
- 플럭스 제동 전류 (ID 519)
- 모터 열 시정수 (ID 707)

파라미터 비교하기

활성화 파라미터 설정값과 내보낸 파라미터 설정값을 비교하고, 그 차이를 표시할 수 있습니다.

단계	지시사항	상세 설명
1 다 게	메드 그 곳에 너 하묘 차기	고급 설정 그룹₩파라미터 관리₩파라미터
·전계	메뉴 부포에서 영국 갖기	비교로 이동합니다.
		″▲/▼″ 버튼을 이용해 텍스트를 선택합니다.
		- 활성 vs. 키패드
		- 활성 vs. 기본값
		- 활성 vs. 1
	명령을 선택	- 활성 vs. 2
2단계		- 1 vs. 2
		- 1 vs. 키패드
		- 2 vs. 키패드
		- 기본값 vs. 키패드
		- 기본값 vs. 1
		- 기본값 vs. 2
3단계	창 표시	OK 버튼을 한 번(1회) 눌러 비교 결과 창을
		엽니다.
4단계	창 닫기	"BACK/RESET" 버튼을 눌러 비교 창을
		닫습니다.

30. 표: 파라미터 비교에 필요한 단계

다중 모니터링

다중 모니터링 기능은 4~9가지 모니터링 가능한 신호의 실제값을 표시합니다.

다중 모니터링 창은 디스플레이 그룹₩다중 모니터링 그룹 메뉴 위치에 있습니다.

참조!

참조!

다중 모니터링 관련 파라미터는 디스플레이 그룹₩다중 모니터링 그룹 메뉴 위치에 있습니다.

다중 모니터링을 위한 신호 선택하기

단계	지시사항	상세 설명
1단계	메뉴 구조에서 항목 찾기	디스플레이 그룹₩다중 모니터링 및 추이 곡선 그룹₩다중 모니터링 보기로 이동합니다.
2단계	다중 모니터링 창 열기	OK 버튼을 한 번(1회) 누릅니다.
3단계	교체할 신호를 선택	"▲/▼/◀/▶" 버튼을 이용해 텍스트를 선택합니다.
4a단계	체크박스를 열어 요소를 선택	OK 버튼을 한 번(1회) 눌러 모니터링 가능한 신호를 포함하고 있는 체크박스를 엽니다.
4b단계	창 닫기	"BACK/RESET" 버튼을 눌러 시계열 창을 닫습니다.

31. 표: 다중 모니터링 신호 선택에 필요한 단계

고장 이력 표시하기

참조!

인버터 메뉴 구조 내에서 고장 이력 40개 항목을 볼 수 있습니다.

i

고장 이력 관련 파라미터 및 고장 이력은 디스플레이 그룹 >고장 이력 메뉴 위치에 있습니다.

단계	지시사항	상세 설명
1단계	항목 위치	디스플레이 그룹₩고장 이력으로 이동하세요.
2단계	상황에 맞는 메뉴로 진입	OK 버튼을 두 번(2회) 누르거나 오른쪽
		버튼을 한 번(1회)눌러 상세 고장 정보를
		표시합니다.
3단계	상황에 맞는 메뉴 닫기	"BACK/RESET" 버튼을 눌러 상세 고장 정보
		창을 닫습니다.

32. 표: 고장 이력 평가에 필요한 단계
고장 리셋하기

인버터가 고장을 표시하며 작동을 중단하는 경우, 고장 원인을 조사한 후 고장을 리셋합니다. "BACK/RESET" 버튼 및 파라미터 등 고장을 리셋하는 데에는 2가지 절차가 있습니다. "BACK/RESET" 버튼으로 리셋하기

그림 188: "BACK/RESET" 버튼으로 고장 리셋하기에 필요한 버튼

단계	지시사항	상세 설명
1단계	키패드에 있는 리셋 버튼을 2초	키패드에 있는 리셋 버튼을 2초 이상 누르고
	이상 누름	모든 활성화 고장을 확인하세요.

표 33: "BACK/RESET" 버튼으로 고장 리셋하기에 필요한 단계

파라미터로 리셋하기

단계	지시사항	상세 설명
1단계	하모 이 비	고급 설정 그룹/고장 리셋₩수동 고장 리셋
	영국 취직	메뉴 항목으로 이동합니다.
2단계	고장 리셋	OK 버튼을 두 번(2회) 누르거나 오른쪽
		버튼을 한 번(1회)눌러 모든 활성화 고장을
		리셋합니다.

표 34: "BACK/RESET" 버튼으로 고장 리셋하기에 필요한 단계

일반적인 메뉴 구조

이번 챕터에는 HMI 키패드 및 HIMS 소프트웨어 툴을 통해 이용 가능한 일반적인 메뉴 구조를 나타냅니다. 메뉴 구조는 키패드 또는 소프트웨어 툴 사용 여부와는 상관 없이 모니터링 및 파라미터 수정 시 동일합니다.

그림 49 : HiD500 메뉴 구조

메뉴 구조 개요

그룹 F - 즐겨찾기 파라미터 (퀵 & 마법사)

F.1 - 마법사 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대
F.1.1	3001	퀵 스타트업 (기본) 마법사	마법사 미실행 (0)	-	0	1
F.1.2	3176	표준 마법사	마법사 미실행 (0)	-	0	1
F.1.3	3177	다목적 마법사	마법사 미실행 (0)	-	0	1
F.1.4	3178	로컬 원격 마법사	마법사 미실행 (0)	-	0	1
F.1.5	3179	다단계 속도 마법사	마법사 미실행 (0)	-	0	1
F.1.6	3180	PID 제어 마법사	마법사 미실행 (0)	-	0	1
F.1.7	3181	모터 전위차계 마법사	마법사 미실행 (0)	-	0	1
F.1.8	3182	멀티 펌프 마법사	마법사 미실행 (0)	-	0	1
F.1.9	3183	화재 모드 마법사	마법사 미실행 (0)	-	0	1
	이 파라미	터 값을 변경해 마법사를 실행시킬 수	있습니다.			
	마법사 미	실행 (0) = 마법사가 실행되지 않았습니	니다 (상태 표시).			
	마법사 실	실행 (1) = 마법사를 실행합니다 (명령).				
	마법사 종	등료 (2) = 마법사가 실행을 종료했습니다	다 (상태 표시).			

35. 표: 마법사 하위 메뉴 항목

F.2 - 애플리케이션 선택 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대		
F.2.1	212	애플리케이션	표준 (0)	-	0	7-		
	드라이브 애플리케이션을 선택하세요. 이 파라미터가 변하는 경우, 다양한 파라미터가 기본값으로 미리							
	정의됩니다.							
	표준 (0)		PID 제어 (4)					
	다목적 (1)		모터 전위차계(5)					
	로컬/원격 (2	2)	다중 펌프 (6)					
	다단계 속도	(3)	화재 모드 (7)					
1								

36. 표: 애플리케이션 선택 하위 메뉴 항목

F.3 - 기본 파라미터 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대
F.3.1	650	모터 유형	유도 전동기 (0)	-	0	0
	유도 전동:	7 (0)				
F.3.2	110	모터 정격 전압	가변	V	가변	가변
	프레임별	선간전압 범위 및 기본값				
F.3.3	111	모터 정격 주파수	가변	Hz	8.00	320.00
	국가 의존	적 기본값.				
F.3.4	112	모터 정격 속도	가변	rpm	24	19200
	프레임 의	존적 기본값.				
F.3.5	113	모터 정격 전류	가변	А	0.1IHD	2IHD
	프레임 의	존적 기본값.				
F.3.6	120	모터 정격 역률	가변	-	0.30	1.00
	프레임 의	존적 기본값.				
F.3.7	101	최소 기준 주파수	0.00	Hz	0.00	가변
	최소 기준	주파수				
F.3.8	102	최대 기준 주파수	가변	Hz	가변	320.00
	최대 기준	주파수				
F.3.9	103	가속 시간 1	5.00	s	0.10	300.00
	출력 주파 :	수를 '0'에서 최대 주파수까?	지 <u>높이는</u> 데 필요한 ·	시간을 설정	정합니다.	
F.3.10	104	감속 시간 1	5.00	s	0.10	300.00
	출력 주파-	수를 최대 주파수에서 '0'까기	이 줄이는 데 필요한 -	시간을 설정	정합니다.	
F.3.11	107	모터 전류 한계	가변	А	$0.1I_{HD}$	I _{ST}
	인버터의 불	최대 모터 전류				
F.3.12	666	에너지 최적화	비활성화 (0)	-	0	1
	에너지를	절약하고 모터 소음을 줄이기	기 위해 인버터가 최소	는 모터 전복	류를 찾습니디	ŀ.
	이 기능은	팬 및 펌프 프로세스 등에 🖣	활용할 수 있습니다.			
	빠른 PID 기	제어 프로세스로는 해당 기능	5을 이용하지 마세요			
	비활성화 ((0)	활성화 (1)			
F.3.13	631	오토튜닝	동작 없음 (0)	-	0	2
	오토튜닝이	이 자동으로 연결된 모터의 I	파라미터를 측정합니	다.		
	동작 없음	(0), 정	지 상태 (1),		회전 상태	(2)
F.3.14	505	기동 방식	램핑 시동 (0)	-	0	1
	램프 기동	(0) 플	라잉 시동 (1)			
F.3.15	506	정지 방식	코스팅(0)	-	0	1
	코스팅(0)	램	프 정지 (1)			
F.3.16	/31	사농 리셋	비왈성화(0)	-	0	1
	비왈성화((0) 왈	성화 (1)			_
F.3.17	/01	외부 고상에 내한 반응	성시 모드에	-	0	5
			따른 고장 정시			
E 2 1 9	700	이나ㅋ그 이러 신성			0	E
F.3.18	700	· 야글노그 입덕 아안 그자 오다	프디딘으로		0	5
	도자 어의		- 포경 경지 (3) 아란 (1)			
	· 승역 ᆹ즘 아라 내저	(0) 서저 규자 즈파스 (2)	걸님 (¹) 아라 저 기즈 :	즈파스 (2)		
	글림 작인'	ᆯᅙ ᅶᄚ ᆍᄳᆍ (4)	걸림 안 기군 *	エーゴー (3)		

IX	ID	이름	:	기본값		단위	최소	최대
	정지 모드(에 따른 고장 정	지 (4)	프리런의	으로 고	<u>1</u> 장 정지 (5)	
F.3.19	172	원격 제어 위치	1	IO 제어 (0)		-	0	1
	원격 제어	위치 선택 (시동	·/정지).					
	IO 제어 (0))		필드버스	≥ 제어	(1)		
F.3.20	117	IO 제어 기준 /	4 선택	AIC + AIV ((5)	-	0	19
	제어 위치기	가 I/O A인 경우	기준 주파수	소스 선택.				
F.3.21	121	키패드 제어 기	준 선택	키패드 기준	= (1)	-	0	19
	제어 위치기	가 키패드인 경역	P 기준 주파수	- 소스 선택.				
F.3.22	122	필드버스 제어	기준	필드버스 (2	!)	-	0	19
		선택						
	제어 위치기	가 필드버스인 경	영우 기준 주피	누수 소스 선택	.			
	다단속 주피	파수 (0)	키패드 기준	(1)	필드	버스 (2)		
	AIC (3)		AIV (4)		AIC ·	+ AIV (5)	PI	D 기준 (6)
	모터 전위기	차계(7)	조이스틱 기련	준 (8)	조깅	기준 (9)		
	차단 1 (10)	차단 2 (11)		차단	3 (12)	치	단 4 (13)
	차단 5 (14)	차단 6 (15)		차단	7 (16)	치	단 8 (17)
	차단 9 (18)	차단 10 (19)					
F.3.23	379	AIC 신호 범위		0.00		%	0.00	100.00
	정격값(20r	mA)을 백분율(%)로 나타낸 이	날로그 신호	범위의	의 시작값.		
F.3.24	390	AIV 신호 범위		20.00		%	0.00	100.00
	정격값(10)	/)을 백분율(%)₫	로 나타낸 아늘	날로그 신호 벋	i위의	시작값.		
F.3.25	11001	RO 1 기능		실행 (2)		-	0	59
F.3.26	11004	RO 2 기능		일반 고장 (3)	-	0	59
F.3.27	11007	DO 기능		대기(1)		-	0	59
	없음 (0)	대기 (1)	실행	! (2)	일반	고장 (3)		
	일반 역고?	장(4) 일반 알림	람(5) 역빙	향 (6)	속도	(7)		
	서미스터 -	고장 (8)	모터	레귤레이터	활성	화 (9)	시동 신호	활성화 (10)
	키패드 제(거 활성화 (11)	io e	3 제어 활성회	· (12)			
	한계 감시	1 (13)	한겨	감시 2 (14)				
	화재 모드	활성화 (15)	조깅] 활성화 (16)			다단속 속도	도 활성화 (17)
	급속 정지	활성화 (18)	PID	슬립 모드 (1	9) =" (2)	2)	PID 소프트	_ 끨 활성화 (20)
	PID 피드백	【감시 안계 (21) 아카 코자 (24)	의 외부	- PID 감시 한 - 1 페이 (25)	계 (2.	2)	입력 압력	알람 고상 (23)
	서리 모오	알담 고상 (24)	모더	1 세어 (25)		모터 2	제어 (26)	모터 3 세어 (27)
	보더 4 세이	月(Zð) 1(21)	보더 시카 케너 27	(22) (22)	1176	보더 0	제어(30) \ ==	거리에도 미12(24)
	지신 세클 BR 제상이	= B14(35)	지신 세클 스	(JZ) B15(36)	시간	세 걸 기 (33) FL	에이궈드 013(34)
	FB 프르세-	스데이터 1 R0	(37) FR I	프르세스 데이	F- 1	R1 (38)	FR 프르세~	ㅅ데이터 1 B2 (39)
	유지보수 9	데이디 100 악란 (40)	유지보수 고경	세 네이 당 (41)		DI (30)		
	기계식 브레	= - (\) 레이크 개방 브리	베이크 명령 (4	-2)	기계	식 브레이=	L 변환 (43)	
	차단 1 (44		차단 2 (45)	,	. " 차단	3 (46)	、	단 4 (47)
	· - 차단 5 (48)	차단 6 (49)		차단	7 (50)	、 、 、 、 、	단 8 (51)
	차단 9 (52)	차단 10 (53)			-	·	
	충압 펌프	제어 (54)	시동 펌프 제	어 (55)	자동	청소 활성	찯 (56)	
	모터 스위기	치 개방 (57)	시험 상시 닫	음 (58)	모터	예열 활성	참 (59)	

IX	ID	이름		기본값		단위	최소	최대
F.3.28	10050	AOC 기능		출력 주파수	-	-	0	31
				(2)				
F.3.29	3086	AOV 기능		출력 주파수	-	-	0	31
				(2)				
	무시험 (0)			전시험	(1)			
	출력 주파-	수 (2) [0-f _{MAX}]		기준 주	파수 (3	B) [0-f _{MAX}]		
	모터 속도	(4) [0-모터 정격	휙 속도]	출력 전	류 (5)	[0-모터 정	격 전류]	
	모터 토크	(6) [0-모터 정격	휙토크]	모터 전	원 (7)	[0-모터 정	격 전력]	
	모터 전압 (8) [0-모터 정격 전압]							
	DC 링크 전	현압 (9) [0-1000	V]	PID 설정	형값 (10	0) [0-100%]	
	PID 피드빅	4 (11) [0-100%]		PID 출락	벽 (12)	[0-100%]		
	외부 PID 를	출력 (13) [0-100)%]					
	필드버스 -	프로세스 데이터	입력 1 (14)	[0-100%]	필드버	버스 프로서	스 데이터 얍	입력 2 (15) [0-100%]
	필드버스 -	프로세스 데이터	입력 3 (16)	[0-100%]	필드버	버스 프로서	스 데이터 얍	입력 4 (17) [0-100%]
	필드버스 -	프로세스 데이터	입력 5 (18)	[0-100%]	필드버	버스 프로서	스 데이터 얍	입력 6 (19) [0-100%]
	필드버스 -	프로세스 데이터	입력 7 (20)	[0-100%]	필드비	버스 프로서	스 데이터 얍	입력 8 (21) [0-100%]
	차단 1 (22) [0-100%]	차단 2 (23) [0-100%]	차단	3 (24) [0-1	00%]	
	차단 4 (25) [0-100%]	차단 5 (26) [0-100%]	차단	6 (27) [0-1	00%]	
	차단 7 (28) [0-100%]	차단 8 (29) [0-100%]	차단	9 (30) [0-1	00%]	
	차단 10 (3	1) [0-100%]						

37. 표: 기본 모니터링 하위 메뉴 항목

F.4 - 다목적 애플리케이션 파라미터 (기본 파라미터 제외) 파라미터 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대
F.4.1	600	제어 모드	U/f 주파수	-	0	2
			제어 개방 루프			
			(0)			
	U/f 주파수	* 제어 개방 루프 (0) *	속도 제어 오픈 루프	(1)	토크 제어	오픈 루프 (2)
F.4.2	1590	자동 토크 부스트	비활성화 (0)	-	0	1
	비활성화 ((0) =	활성화 (1)			
F.4.3	502	가속 시간 2	10.00	s	0.10	300.00
	출력 주파:	수를 '0'에서 최대 주파수까지 높이	는 데 필요한 시간을	설정합니다	·	
F.4.4	503	감속 시간 2	10.00	s	0.10	300.00
	출력 주파:	수를 최대 주파수에서 '0'까지 줄이	는 데 필요한 시간을	제공합니다		
F.4.5	105	다단속 주파수 1	10.00	Hz	가변	가변
	디지털 입	력 "다단속 주파수 0 선택"에 대한	물리적 입력값을 선	택합니다.		
F.4.6	108	U/f 비율	정토크(선형) (0)	-	0	2
	제로 주파:	수와 약계자점 간 U/f 곡선 유형.				
	정토크(선정	형)(0) 저감토크((자승) (1)	프로그	.램 가능 (2)	
F.4.7	602	약계자점 주파수	가변	Hz	8.00	가변
	약계자점은	을 출력 전압이 약계자점 전압에 도	달할 때의 출력 주파	수를 말합니	다.	
F.4.8	603	약계자점 전압	100.00	%	10.00	200.00
	모터 정격	전압 백분율로 표시한 약계자점에	서의 전압.			
F.4.9	604	U/f 중간점 주파수	가변	Hz	0.00	가변
	<i>U/f 비율</i> 겁	값을 프로그래밍할 경우 해당 파라디	미터는 곡선의 중간 측	주파수를 제공	공합니다.	
F.4.10	605	U/f 중간점 전압	100.00	%	0.00	100.00
	<i>U/f 비율</i> 겁	값을 프로그래밍할 경우 해당 파라디	미터는 곡선의 중간점	d 전압을 제공	공합니다.	
F.4.11	606	제로 주파수 전압	가변	%	0.00	40.00
	이 파라미!	터는 U/f 곡선의 제로 주파수 전압을	을 제공합니다			
F.4.12	517	기동 자화 전류	가변	A	0.00	가변
	시동 시 모	.터에 공급하는 DC 전류를 규정합니	- 다.			
	비활성화 ((0)	1			
F.4.13	516	기동 자화 시간	0.00	S	0.00	600.00
	이 파라미!	터는 가속 시작 전 DC 전류를 모터	에 공급하는 시간을	규정합니다.		
F.4.14	507	DC 브레이크 전류	가변	A	가변	가변
	DC 제동 중	중 모터에 주입되는 전류를 규정합니	- ㄷト.			
	비활성화 ((0)	1			
F.4.15	508	정지 시 DC 제동 시간	0.00	S	0.00	600.00
	모터가 정기	지할 때 브레이킹의 전원 여부 및 [')C- 브레이크의 제동	시간을 결정	성합니다.	
F.4.16	515	램프 정지 시 DC 제동을	0.00	%	0.10	50.00
		시작하는 주파수				
	DC- 제동C	이 적용될 때의 출력 주파수.		1		
F.4.17	620	부하 드룹	0.00	%	0.00	20.00
	해당 기능	은 부하 기능으로 속도 저하를 활성	화합니다. 부하 드룹	은 정격 부히	하에서 정격 =	속도의
	백분율로 특	주어집니다.				

IX	ID	이름	기본값	단위	최소	최대		
F.4.18	656	부하 드룹 시간	0.00	S	0.00	2.00		
	부하가 변할 때 로드 드룹을 이용해 동적 속도 드룹을 얻으세요. 이 파라미터는 속도가 변경 사항의							
	63%를 복-	구하는 시간을 제공합니다.						
F.4.19	1534	부하 드룹 모드	정상 (0)	-	0	1		
	정상 (0) = 부하 드룹 인자가 주파수 범위에서 상수입니다.							
	선형 제거 (1) = 부하 드룹이 정격 주파수부터 제로 주파수까지 선형으로 제거됩니다.							

38. 표: 다목적 애플리케이션 파라미터 (기본 파라미터 제외) 하위 메뉴 항목

F.5 - 로컬/원격 애플리케이션 파라미터 (기본 파라미터 제외) 하위 메뉴

IX	ID	이름		기본값	단위	최소	최대
F.5.1	211	로컬/원격		원격 (0)	-	0	1
	로컬 및 원	격 제어 위치 건	난 전환합니다.				
	원격 (0)		로컬 (1)				
F.5.2	131	IO 제어 기준	B 선택	AIV (4)	-	0	19
	제어 위치기	가 I/O B인 경우	기준 소스 선택.				
	다단속 주피	파수 (0)	키패드 기준 (1)	필드버스 (2)	AIC (3)		
	AIV (4) AIC + AIV (5)		PID 기준 (6)	모터	전위차계(7	7)	
	조이스틱 기	기준 (8)	조깅 기준 (9)				
	차단 1 (10)	차단 2 (11)	차단 3 (12)	차단	4 (13)	
	차단 5 (14)	차단 6 (15)	차단 7 (16)	차단	8 (17)	
	차단 9 (18)	차단 10 (19)	1			
F5.3	425	IO B 제어 선택	백	DIN_PortA6 (7)	-	0	10
	참 = 제어	위치를 IO B로	지정.				
	선택 가능적	한 열거값은 모-	든 디지털 입력에 대해 ·	동일합니다.			
F5.4	343	IO B 기준 선택	택	DIN_PortA6 (7)	-	0	10
	참 = 기준을	을 IO B로 지정.					
	선택 가능협	한 열거값은 모-	든 디지털 입력에 대해 ·	동일합니다.			
F.5.5	423	제어 신호 1 E	}	DIN_PortA4 (4)	-	0	10
	제어 위치기	가 IO B인 경우	제어 신호 1.				
	선택 가능협	한 열거값은 모-	든 디지털 입력에 대해 ·	동일합니다.			
F.5.6	424	제어 신호 2 E	}	DIN_PortA5 (5)	-	0	10
	제어 위치기	가 IO B인 경우	제어 신호 2.				
	선택 가능적	한 열거값은 모-	든 디지털 입력에 대해·	동일합니다.			
F.5.7	410	키패드 제어 성	선택	DIN_PortA8 (8)	-	0	10
	참 = 제어	위치를 키패드.	로 지정.				
	선택 가능협	한 열거값은 모-	든 디지털 입력에 대해·	동일합니다.			

39. 표: 로컬/원격 애플리케이션 파라미터 (기본 파라미터 제외) 하위 메뉴 항목

F.6 - 다단계 속도 애플리케이션 파라미터 (기본 파라미터 제외) 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대
F.6.1	105	다단속 주파수 1	10.00	Hz	가변	가변
	디지털 입	력 "다단속 주파수 선택 A"에 대한	· 물리적 입력값을 선택	합니다.		
F.6.2	106	다단속 주파수 2	15.00	Hz	가변	가변
	디지털 입	력 "다단속 주파수 선택 B"에 대힌	물리적 입력값을 선택	합니다.		
F.6.3	126	다단속 주파수 3	20.00	Hz	가변	가변
	디지털 입	력 "다단속 주파수 선택 A & B" 디	배한 물리적 입력값을 선	택합니다.		
F.6.4	127	다단속 주파수 4	25.00	Hz	가변	가변
	디지털 입	력 "다단속 주파수 선택 C"에 대힌	· 물리적 입력값을 선택	합니다.		
F.6.5	128	다단속 주파수 5	30.00	Hz	가변	가변
	디지털 입	력 "다단속 주파수 선택 A & B"에	대한 물리적 입력값을	선택합니다.		
F.6.6	129	다단속 주파수 6	40.00	Hz	가변	가변
	디지털 입	력 "다단속 주파수 선택 B & C"에	대한 물리적 입력값을	선택합니다.		
F.6.7	130	다단속 주파수 7	50.00	Hz	가변	가변
	디지털 입	력 "다단속 주파수 선택 A & B &	C"에 대한 물리적 입력	값을 선택합	니다.	
F.6.8	182	다단속 주파수 모드	바이너리 코드 (0)	-	0	1
	활성화 된	다단속 디지털 입력 수가 다단속격	두파수를 결정합니다.			
	바이너리 :	코드 (0)	입력 수 (1)			

40. 표: 다단계 속도 애플리케이션 파라미터 (기본 파라미터 제외) 하위 메뉴 항목

F.7 - 모터 전위차계애플리케이션 파라미터 (기본 파라미터 제외) 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대				
F.7.1	331	모터 전위차계램프 시간	10.00	Hz/s	0.10	500.00				
	모터 전위	<i>모터 전위차계상승</i> 또는 <i>모터 전위차계하강</i> 으로 모터 전위차계 기준이 증가 또는 감소할 때 이의								
	변화율.									
F.7.2	367	모터 전위차계 리셋	정지 시 리셋	-	0	2				
			(1)							
	모터 전위차계 기준 주파수에 대한 리셋 로직.									
	비리셋 (0))								
	정지 시 리	셋 (1)								
	전원 차단	시 리셋 (2)								
F.7.3	105	다단속 주파수 1	10.00	Hz	가변	가변				
	디지털 입	l력 "다단속 주파수 선택 A"에 대한 물리적	입력값을 선택합니	다.						

41. 표: 모터 전위차계 애플리케이션 파라미터 (기본 파라미터 제외) 하위 메뉴 항목

F.8 - PID 제어 애플리케이션 파라미터 (기본 파라미터 제외) 하위 메뉴

IX	ID	이름		기본값	단위	최소	최대
F.8.1	118	PID 게인		100.00	%	0.00	1000.00
	파라미터	↓ 값을 100%로 설정한 경의	우, 오차값10%	· 6 변동은 컨트롤러 클	· 출력 10% 변	_ 동을 발생 시	 킵니다.
F.8.2	119	PID 적분 시간		1.00	s	0.00	600.00
	파라미터	↓ ····································	으. 오차값 10%	· 6 변동은 컨트롤러 🗄	· 출력 10.00%) 6/s 변동을 발	· 생
	· · · · · 시킵니다.						0
F.8.3	132	PID 미분 시간		0.00	s	0.00	100.00
	파라미터	└ 값을 1.00s로 설정한 경역	우, 1.00s 동안	_ 오차값 10% 변동은	· · 컨트롤러 클	_ 출력 10.00%	' 변동을
	발생 시킵	니다.					
F.8.4	334	피드백 1 소스 선택		AIV (2)	-	0	30
	AI 및 프로	_ 르세스 데이터 입력은 백분	른율(0.00~100	.00%)로 프로세스되	고 피드백 3	_ 최소, 최대에	따라
	조정됩니	다. 주의! 프로세스 데이터	ㅣ입력 신호는	· 소수점 2자리를 사	용합니다. 온	으도 입력을 설	설정하는
	경우, 설정	성값 최소 및 최대 범위 파	라미터를 -50	~ 200°C로 설정해(야 합니다.		
	미사용 (0))					
	AIC (1)		AIV (2)		AI 3 (3)		
	AI 4 (4)		AI 5 (5)		AI 6 (6)		
	프로세스	데이터 입력 1 (7)	프로세스 데	이터 입력 2 (8)	프로세스	느데이터 입릭	ᅾ 3 (9)
	프로세스	데이터 입력 4 (10)	프로세스 데	이터 입력 5 (11)	프로세스	느데이터 입릭	ᅾ 6 (12)
	프로세스	데이터 입력 7 (13)	프로세스 데	이터 입력 8 (14)			
	온도 입력	1 (15) 온도 입	력 2 (16)	온도 입력 3 (1	L7)		
	온도 입력	4 (18) 온도 입	력 5 (19)	온도 입력 6 (2	20)		
	차단 1 (21	1)	차단 2 (22)	· 2 (22) 차단 3		차단 3 (23) 차단 6 (26)	
	차단 4 (24	4)	차단 5 (25) 차단 8 (28)		차단 6 (
	자단 7 (22	7)			차단 9 (29)		
	자단 10 ()					0	22
F.8.5		│ 실성값 I 소스 선택 \/// ↓ 데이티 이러이 배티					32 rrl
	AI 및 프로세스 데이터 입력은 백분율(0.00~100.00%)로 프로세스되고 설정값 최소, 최대에 따라						
	소싱됩니니 거ㅇ 서저	-^. 주의! 프로제스 네이터 17: 치즈 미 치대 버이 파	1 입덕 신오근 의미디르 50	· 소수심 2사디를 사	·용압니다. 관 아하니다	도 입덕을 실	실상아는
	이사요 (0)	3없 꾀꼬 곳 꾀네 곱귀 피	기교도 서저	~ 200 C도 결경에(가 1 (1)	가입니다. 키페드	서저가 2 (2)	
)	기페드 걸경 ATV (4)	ΉX Τ (Τ)		2'0'W 2 (2)	
	AI 4 (6)		AI 5 (7)		AI 6 (8)		
	고로세스	데이터 입력 1 (9)	프로세스 데	이터 입력 2 (10)	프로세기	└ 데이터 입릴	3 (11)
	프로세스	데이터 입력 4 (12)	프로세스 데	이터 입력 5 (13)	프로세스	- " ' ' 입 _ 데이터 입릴	╡ 6 (14)
	프로세스	데이터 입력 7 (15)	프로세스 데	이터 입력 8 (16)	"_		
	온도 입력	1(17) 온도입	력 2 (18)	온도 입력 3 (1	L9)		
	온도 입력	4 (20) 온도 입	력 5 (21)	온도 입력 6 (2	22)		
	차단 1 (23	3)	차단 2 (24)		차단 3 ((25)	
	차단 4 (26	6)	차단 5 (27)		차단 6 ((28)	
	차단 7 (29	9)	차단 8 (30)		차단 9 ((31)	
	차단 10 (3	32)					
F.8.6	167	키패드 설정값 1		0.00	가변	가변	가변

IX	ID	이름	기본값	단위	최소	최대
F.8.7	1016	SP 1 슬립 주파수	0.00	Hz	0.00	320.00
	출력 주파	수가 <i>SP 1 슬립 지연</i> 으로 설정한 시간	보다 더 오랫동안 하	당 한계값 (이하가 되면 '	인버터는
	슬립 모드	로 들어갑니다.				
F.8.8	1017	SP 1 슬립 지연	0.00	S	0.00	3000.00
	인버터가 [;]	정지하기 전 주파수가 슬립 레벨 이하	를 유지해야 하는 초	소한의 시건	<u>ŀ</u> .	
F.8.9	1018	SP 1 슬립 기능 Wake-up 레벨	0.00	가변	0.00	0.00
	PID 피드빅	백 값 Wake-up 감시에 대한 레벨을 제	공합니다. 설정 프로	세스 단위를	- 사용합니다	
F.8.10	105	다단속 주파수 1	10.00	Hz	가변	가변
	디지털 입	력 "다단속 주파수 선택 A"에 대한 물	리적 입력값을 선택	합니다.		

42. 표: PID 제어 애플리케이션 파라미터 (기본 파라미터 제외) 하위 메뉴 항목

F.9 - 다중 펌프 애플리케이션 파라미터 (기본 파라미터 제외) 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대		
F.9.1	1001	모터 수	1	대	1	3		
	멀티 펌프 (멀티 모터) 시스템에 있는 모터 (또는 펌프나 팬)의 수량.							
F.9.2	1032	인터락 기능	활성화 (1)	-	0	1		
	인터락 활성	성화 또는 비활성화. 모터 연결 여부를 시	스템에 전하는 데 인	!터락을 이용	용할 수 있습니	다.		
	비활성화 (0)						
	활성화 (1)							
F.9.3	1027	자동 변경	활성화 (1)	-	0	1		
	시동 시퀀=	느 및 모터 우선 순위 순환을 활성화 또는	· 비활성화합니다.					
	비활성화 (D)						
	활성화 (1)		1					
F.9.4	1028	FC 포함	활성화 (1)	-	0	1		
	자동 변경 및 인터락 시스템 내 인버터 포함							
	비활성화 (0)							
	활성화 (1)		1					
F.9.5	1029	자동 변경 간격	48	시간	0.00	3000.0		
	이 시간이 경과하면, 용량을 <i>자동 변경 주파수 한계</i> 및 <i>자동 변경 모터 한계</i> 로 설정한 레벨 이하가 되는							
	경우 자동	변경이 일어납니다.	1					
F.9.6	1031	자동 변경 주파수 한계	0.00	Hz	가변	25.00		
	이 파라미티	러는 용량 자동 변경이 발생하기 위해 유	지되어야 하는 하한	레벨을 규정	합니다.			
F.9.7	1097	대역폭	10	%	0	100		
	설정값 백분	분율. 예, 설정값=5bar 일 때 대역폭=10%	입니다. 피드백 값이	4.5 ~ 5.5b	ar 사이일 때	, 모터는		
	분리 또는	제거되지 않습니다.	1					
F.9.8	1098	대역폭 지연	10	S	0	3600		
	피드백이 더	개역폭을 벗어나는 경우, 펌프를 추가 또는	= 제거하기 전 반드	시 해당 시긴	<u>난</u> 이 지나야 힡	남니다.		

43. 표: 멀티 모터 애플리케이션 마법사 종속 파라미터

F.10 - 화재 모드 애플리케이션 파라미터 (기본 파라미터 제외) 하위 메뉴

IX	ID	이름		기본값	단위	최소	최대
F.10.1	1617	화재 모드 주파수 소스	:	화재 모드	-	0	18
				주파수 (0)			
	화재 모드	활성화 시 기준 주파수 :	소스 선택. 화재	모드 작동 시 AIC 또·	는 PID 컨트를	롤러 등을 기	·준
	소스로 선택	택할 수 있습니다.					
	화재 모드	주파수 (0)					
	다단속 속!	도 (1)	키패드 (2)		필드버스 (3)		
	AIC (4)		AIV (5)		AIC + AIV (6)	
	PID 1 (7)		모터 전위차계	(8)			
	차단 1 (9)		차단 2 (10)		차단 3 (11)		
	차단 4 (12	2)	차단 5 (13)		차단 6 (14)		
	차단 7 (15	i)	차단 8 (16)		차단 9 (17)		
	차단 10 (1	.8)					
F.10.2	1598	화재 모드 주파수		50.00	Hz	8.00	가변
	화재 모드	활성화 시 사용되는 주 피	마수. <i>화재 모드 극</i>	<i>주파수 소스</i> 값이 <i>화</i>	<i>때 모드 주파</i> ·	<i>수</i> 인 경우 인	!버터는
	해당 주파=	수를 사용합니다.			1		
F.10.3	1596	화재 모드 활성화 개방		DIN_Port02	-	0	10
				(10) = 참			
	거짓 = 화	재 모드 활성화					
	선택 가능점	한 열거값은 모든 디지털	입력에 대해 동	일합니다. 해당 디지	털 입력 신호	5 유형은 N([(상시
	닫힘)입니[다.					
F.10.4	1619	화재 모드 활성화 폐쇄		DIN_Port01 (9)	-	0	10
				= 거짓			
	잠 = 화재	모드 활성화					
	선택 가능?	안 얼거값은 모는 니시털 -'	입력에 내해 농	일압니나. 해당 니시	털 입력 신호	유영은 NC	/ (상시
F 10 F	열림)입니					0	10
F.10.5	1010	와제 모드 역당양			-	0	10
	거지 – 하	┃ 재 ㅁㄷ 화서히 시 저바히		- 기곳 차 - 히재 ㅁㄷ 회	 	 	
	시탠 가능적	제 <u>또</u> 글 강지 지 않았 하 역거값은 모드 디지털	5 되던 ! 인력에 대해 동	입하니다	104 M 70	이지만	
	모터가 화기	다 같아요는 또는 아이들 재 모드에서 상시 정방형	· 또는 상시 역방	향으로 작동하는 데	핔요한 경우.	정확한 디기	디텈
	입력을 선택	ᅤ #		01012 #			. –
	DIN Port0	1 = 상시 정방향		DIN Port0.2 = 상	시 역방향		
F.10.6	1599	화재 모드 비밀번호		0	-	0	9999
	화재 모드	_ 기능에는 시험 모드 및 [:]	활성 모드 등 2기	└ ト지 모드가 있습니다	_ . 모드를 선틱	' 하려면 화지	내 모드
	비밀번호어	네서 비밀번호를 적어 주,	세요. 시험 모드0	네서 고장 발생 시 인	버터가 정지함	합니다. 이	
	파라미터로	^로 화재 모드 기능의 모드	.를 선택하세요.				
	1002 = 활	성화 = 드라이브가 모든	· 고장을 리셋하고	고 계속해서			
	더 이상 가	·능하지 않을 때까지 동을	일한 속도로 작동	합니다.			
	1234 = 시	험 모드 = 드라이브가 그	그장을 자동으로	리셋하지 않으며			
	고장 발생	시 드라이브가 정지합니	다.				

표 44: 화재 모드 애플리케이션 마법사 종속 파라미터

그룹 D - 디스플레이 그룹

D.1 - 다중 모니터링 및 추이 곡선 그룹 하위 메뉴

IX	ID	이름				
D1.1	3010	다중 모니터링 보기				
	다중 모니티	 니터링 창을 엽니다.				
D1.2	3011	추이 곡선 보기				
	추이 곡선 :	창을 엽니다.				

45. 표: 다중 모니터링 그룹 하위 메뉴 항목

D.2 - 기본 모니터링 그룹 하위 메뉴

IX	ID	이름			단위	스케일	
D.2.1	1	출력 주파수			Hz	0.01	
	모터 출력	주파수					
D.2.2	25	기준 주파수			Hz	0.01	
	모터 제어	기준 주파수					
D.2.3	2	모터 속도			rpm	1	
	모터의 실	제 속도 (rpm)					
D.2.4	3	모터 전류			A	가변	
	RMS						
D.2.5	4	모터 토크			%	0.1	
	샤프트 토	크 계산값					
D.2.6	5	모터 샤프트 전력			%	0.1	
	모터 샤프	트 전력 계산값					
D.2.7	6	모터 전압			V	0.10	
	모터 출력	전압					
D.2.8	7	DC 링크 전압			V	1	
	인버터 DC- 링크에서 측정한 전압						
D.2.9	8	장치 온도			가변	0.10	
	방열판 온	·도					
D.2.10	9	모터 온도			%	0.10	
	정격 작동	오도 백분율로 표시한 !	코터 온도 계산값				
D.2.11	18	토크 기준			%	0.10	
	모터 제어	최종 토크 기준					
D.2.12	3022	회전 방향			-	1	
	정방향 C\	N (0)	역방향 CCW (1)				
D.2.13	43	인버터 상태워드			-	1	
	비트 부호	워드					
	B1 = 대기		B2 = 실행	B3 = 고장			
	B6 = 기동	· 활성화	B7 = 알람 활성화	B10 = 정지 DC 전	현류		
	B11 = DC	〕 브레이크 활성화	B12 = 기동 요청	B13 = 모터 레귤i	레이터 활성화		
D.2.14	78	준비 상태			-	1	
	│ 준비 상태	에 관한 비트 부호 데이터	터. 해당 데이터는 인버터기	h 대기 상태가 아닐	때 모니터링어		
	유용합니	다. 그래픽 디스플레이에	서 체크박스로 값을 볼 수	있습니다. 박스를 쳐	∥크 표시하면 ネ	값이	

IX	ID	이름		단위	스케일			
	활성화됩니	니다.						
	B0 = 운전 가능 (Ready) 고조(high) B1 = 고자 화성히 업용							
	B1 = 고징	t 활성화 없음						
	B2 = 충전 스위치 닫힘							
	B3 = DC 전압 제한값 이내							
	B4 = 전원	! 관리자 초기화						
	B5 = 전원	! 장치가 기동을 차단하지 않음	0					
	B6 = 시스	템 소프트웨어가 기동을 차던	한하지 않음					
D.2.15	89	애플리케이션 상태워드 1		-	1			
	애플리케이	이션의 비트 부호. 상태	B5 = I/O A 제어 활성화					
	그래픽 디	스플레이에서 체크박스로	B6 = I/O B 제어 활성화					
	값을 볼 수	▷ 있습니다. 박스를 체크	B7 = 필드버스 제어 활성화					
	표시하면	값이 활성화됩니다.	B8 = 로컬 제어 활성화					
	B0 = 인터	락 1	B9 = PC 제어 활성화					
	B1 = 인터	락 2	B10 = 다단속 주파수 활성화					
	B2 = 역빙	향	B11 = 조깅 활성화					
	B3 = 램프	2 활성화	B12 = 화재 모드 활성화					
	B4 = 기겨	식 브레이크 제어	B13 = 모터 예열 활성화					
			B14 = 급속 정지 활성화					
			B15 = 키패드로 인버터 정지					
D.2.16	90	애플리케이션 상태워드 2		-	1			
	애플리케이	이션의 비트 부호. 상태 그래픽	ㅣ 디스플레이에서 체크박스로 값을 볼 수	· 있습니다. 박:	스를 체크			
	표시하면	값이 활성화됩니다.						
	B0 = 가속	/감속 금지						
	B1 = 모터	절체 개방						
	B5 = 충입	i 펌프 활성화						
	B6 = 시동	· 펌프 활성화						
	B7 = 입력	[압력 감시 (알람 / 고장)						
	B8 = 서리	보호 (알람 / 고장)						
	B9 = 자동	- 세정 활성화						

46. 표: 기본 모니터링 그룹 하위 메뉴 항목

D.3 - 유지보수 & 카운터 그룹 하위 메뉴

IX	ID	이름	단위	스케일			
D.3.1	1101	유지보수 카운터 1	가변	가변			
	시간 또는	- 회전/1000으로 나타내는 유지보수 카운터의 상태. 카운터 값이 한계보	L다 큰 경우,	알람			
	또는 고장이 표시됩니다.						
D.3.2	56	DIN 상태워드 1	-	1			
	각 비트기	- + 1자리 디지털 입력을 나타낼 때 16비트 워드. 각 DIN_Port에서 8자리 디	니지털 입력깂				
	읽습니다.	. 워드 1은 DIN_PortA (bit0)의 입력 1에서 시작해 첫 번째 DI 옵션 보드(l	oit15)의 입력	8까지			
	이어집니	다.					
D.3.4	3012	기본 DIN 1(b0), 2(b1), 3(b2), 4(b3), 5(b4), 6(b5), 7(b6), 8(b7)	-	1			
	각 비트기	+ 1자리 디지털 입력을 나타낼 때 16비트 워드. 각 DIN_PortA에서 8자리	디지털 입력	값을			
	읽습니다.						
D.3.5	3002	기본 RO 1, 2 & DO 1	-	1			
	각 비트기	ት 1자리 디지털 출력을 나타낼 때 16비트. 워드 3개 비트는 각각 RP 1, R0	O 2 및 DO 1	의			
	상태를 니	타냅니다.					
D.3.6	37	최근 활성화 고장 코드	-	1			
	리셋되지	않은 최근 고장의 고장 코드.					
D.3.7	95	최근 활성화 고장 ID	-	1			
	리셋되지	않은 최근 고장의 고장 ID.					
D.3.8	74	최근 활성화 알람 코드	-	1			
	리셋되지	않은 최근 알람의 코드.					
D.3.9	94	최근 활성화 알람 ID	-	1			
	리셋되지	않은 최근 알람 ID.					
D.3.10	2291	에너지 카운터	가변	1			
	공급망에서 가져오는 에너지량. 카운터를 리셋할 수 없습니다. 텍스트 디스플레이에서 디스플레이에						
	나타나는 최고 에너지 단위는 MW입니다. 계산된 에너지가 999.9MW 이상인 경우, 디스플레이 상에						
	단위가 니	바타나지 않습니다.					
D.3.11	2298	운전 시간 (년)	년	1			
	제어 장치	의 총 작동 년수.					
D.3.12	3013	운전 시간 (일)	일	1			
	제어 장치	의 총 작동 일수. □		1			
D.3.13	2293	모터 운전 시간 (년)	년	1			
	총 모터 은	운전 년수.		1			
D.3.14	3014	모터 운전 시간 (일)	일	1			
	총 모터 은	운전 일수.		1			
D.3.15	2294	전원 켜짐 시간 (년)	년 	1			
	전원 장치	의 전원이 켜진 시간량. 카운터를 리셋할 수 없습니다. 총 전원 켜짐 년~ 		1			
D.3.16	3015	전원 켜짐 시간 (일)	일	1			
	총 전원 켜	석짐 일수. ┃		1			
D.3.17	2295	시동 지령 카운터	회	1			
	전원 장치	가 시동된 횟수.					
D.3.18	2296	에너지 트립 카운터	가변	1			
	이 카운터	를 리셋할 수 있습니다. 텍스트 디스플레이에서 디스플레이에 나타나는	최고 에너지	단위는			
	MW입니	다. 계산된 에너지가 999.9MW 이상인 경우, 디스플레이 상에 단위가 나티	타나지 않습니	. 다.			
	카운터 리	[셋					

IX	ID	이름	단위	스케일			
D.3.19	2299	작동 시간 트립 카운터 (년)	년	1			
	총 작동 년	년수.					
D.3.20	3016	작동 시간 트립 카운터 (일)	일	1			
	총 작동 일	실수.					
D.3.21	3005	소프트웨어 패키지 ID	-	1			
	소프트웨(거 식별 코드					
D.3.22	3006	소프트웨어 패키지 버전	-	1			
	소프트웨어 식별 코드						
D.3.23	2300	시스템 부하	%	1			
	제어 장치 CPU 부하						
D.3.24	3007	애플리케이션 이름	-	1			
	애플리케이션 이름						
D.3.25	3008	애플리케이션 ID	-	1			
	애플리케이	애플리케이션 코드					
D.3.26	3009	애플리케이션 버전	-	1			
	애플리케(이션 버전					

47. 표: 유지보수 및 카운터 그룹 하위 메뉴 항목

D.4 - PID 그룹 하위 메뉴

IX	ID	이름	단위	스케일				
D.4.1	20	PID1 설정값	가변	가변				
	프로세스 니	ㅐ PID 컨트롤러의 설정값. 프로세스를 선택하는 데 파라미터를 사용할	할 수 있습니더	ŀ.				
D.4.2	21	PID 1 피드백	가변	가변				
	프로세스 니	H PID 컨트롤러의 피드백 값. 프로세스를 선택하는 데 파라미터를 사	용할 수 있습	니다.				
D.4.3	22	PID 1 오류 값	가변	가변				
	PID 컨트롤	러의 오류 값. 프로세스 내 설정값에서 오는 피드백 편차입니다. 프로	-세스를 선택?	하는 데				
	파라미터를	사용할 수 있습니다.						
D.4.4	23	PID 1 출력	%	0.01				
	백분율로 니	나타낸 PID 출력 (0100%). 해당 값을 모터 제어 (기준 주파수) 또는 (가날로그 출력	으로				
	제공할 수	있습니다.						
D.4.5	24	PID 1 상태	-	1				
	정지 (0)							
	실행 (1)							
	슬립 모드 (3)							
	불감대(Dea	ad Band) (4)						
D.4.6	83	외부 PID 설정값	가변	가변				
	프로세스 내 외부 PID 컨트롤러의 설정값. 프로세스를 선택하는 데 파라미터를 사용할 수 있습니다.							
D.4.7	84	외부 PID 피드백	가변	가변				
	프로세스 내 외부 PID 컨트롤러의 피드백. 프로세스를 선택하는 데 파라미터를 사용할 수 있습니다.							
D.4.8	85	외부 PID 오류 값	가변	가변				
	외부 PID 컨트롤러의 오류 값. 프로세스 내 설정값에서 오는 피드백 편차입니다. 프로세스를 선택하는							
	데 파라미터를 사용할 수 있습니다.							
D.4.9	86	외부 PID 출력	%	%				
	백분율로 니	나타낸 외부 PID 컨트롤러 출력 (0100%). 해당 값을 아날로그 출력 -	등으로 제공힐	! 수				
	있습니다.							
D.4.10	87	외부 PID 상태	-	1				
	정지 (0)							
	실행 (1)							
	불감대(Dea	ad Band) (4)						

48. 표: PID 그룹 하위 메뉴 항목

D.5 - 아날로그 입력 및 출력 하위 메뉴

IX	ID	이름	단위	스케일			
D.5.1	59	AIC	%	0.01			
D.5.2	60	AIV	%	0.01			
	사용 범위를 !	사용 범위를 백분율로 나타낸 입력 신호.					
D.5.7	81	기본 AOC	%	0.01			
D.5.8	3004	기본 AOV	%	0.01			
	사용 범위를 백분율로 나타낸 아날로그 출력 신호.						

49. 표: 아날로그 입력 하위 메뉴 항목

D.8 - 필드버스 모니터링 그룹 하위 메뉴

IX	ID	이름	단위	스케일				
D.8.1	874	FB 제어워드	-	1				
	애플리케이션이 바이패스 모드/포맷에서 사용하는 필드버스 제어워드. 필드버스 유형 또는 프로필에							
	따라 데이	따라 데이터를 수정한 후 애플리케이션에 전송할 수 있습니다.						
D.8.2	875	FB 속도 기준	-	가변				
	애플리케C	이션이 주파수를 수신할 때 최소 주파수와 최대 주파수 사이에서 조정	영하는 속도	기준.				
	애플리케이	이션이 기준에 영향을 미치지 않고 기준을 수신한 후에는 최소 및 최	대 주파수를	를 변경할 수				
	있습니다.							
D.8.3	876	FB 데이터 입력 1	-	1				
D.8.4	877	FB 데이터 입력 2	-	1				
D.8.5	878	FB 데이터 입력 3	-	1				
D.8.6	879	FB 데이터 입력 4	-	1				
D.8.7	880	FB 데이터 입력 5	-	1				
D.8.8	881	FB 데이터 입력 6	-	1				
D.8.9	882	FB 데이터 입력 7	-	1				
D.8.10	883	FB 데이터 입력 8	-	1				
	32bit sing	ed 포맷의 프로세스 데이터 원시값						
D.8.11	864	FB 상태워드	-	1				
	애플리케이	이션이 바이패스 모드/포맷에서 보내는 필드버스 상태워드워드. 필드	버스 유형	또는				
	프로필에	따라 데이터를 수정한 후 필드버스에 전송할 수 있습니다.						
D.8.12	865	FB 실제 속도	-	0.01				
	백분율로	나타낸 실제 속도. 0% 값은 최소 주파수와 일치하고 100% 값은 최다	주파수와	일치합니다.				
	이는 순간	최소 및 최대 주파수와 출력 주파수에 따라 지속적으로 업데이트됩	니다.					
D.8.13	866	FB 데이터 출력 1	-	1				
D.8.14	867	FB 데이터 출력 2	-	1				
D.8.15	868	FB 데이터 출력 3	-	1				
D.8.16	869	FB 데이터 출력 4	-	1				
D.8.17	870	FB 데이터 출력 5	-	1				
D.8.18	871	FB 데이터 출력 6	-	1				
D.8.19	872	FB 데이터 출력 7	-	1				
D.8.20	873	FB 데이터 출력 8	-	1				
	32bit sing	ed 포맷의 프로세스 데이터 원시값						

50. 표: 필드버스 모니터링 그룹 하위 메뉴 항목

D.9 - 타이머 모니터링 그룹 하위 메뉴

IX	ID	이름	단위	스케일
D.9.1	1441	TC 1, TC 2, TC 3	-	1
	시간 채널(TC) 세 개(3)의 상태를 모니터링할 수 있습니다.		
D.9.2	1442	간격 1	-	1
D.9.3	1443	간격 2	-	1
D.9.4	1444	간격 3	-	1
D.9.5	1445	간격 4	-	1
D.9.6	1446	간격 5	-	1
	타이머 간	격 상태		
D.9.7	1447	타이머 1	초	1
D.9.8	1448	타이머 2	초	1
D.9.9	1449	타이머 3	초	1
	타이머가	활성화 상태인 경우, 타이머의 잔여 시간		
D.9.10	3091	실시간 클럭 시간	시	1
D.9.11	3092	실시간 클럭 분	분	1
D.9.12	3093	실시간 클럭 초	초	1

51. 표: 타이머 모니터링 그룹 하위 메뉴 항목

D.10 - 모터 제어 벽	변수 (줄력)	전류/전압)	하위	메뉴
----------------	---------	--------	----	----

IX	ID	이름	단위	스케일
D.10.1	1	출력 주파수	Hz	0.01
	모터 출력	주파수		
D.10.2	25	기준 주파수	Hz	0.01
	모터 제어	기준 주파수		
D.10.3	2	모터 속도	rpm	1
	모터의 실제	케 속도 (rpm)		
D.10.4	3	모터 전류	A	가변
D.10.5	4	모터 토크	%	0.1
	샤프트 토크	크 계산값		
D.10.6	5	모터 샤프트 전력	%	0.10
	백분율로 니	나타낸 모터 샤프트 전력 계산값		
D.10.7	73	모터 샤프트 전력	가변	가변
	모터 샤프트	트 전력.계산값		
D.10.8	6	모터 전압	V	0.10
	모터 출력	전압		
D.10.9	7	DC 링크 전압	V	1
	인버터 DC	링크에서 측정한 전압		
D.10.10	8	장치 온도	가변	0.10
	방열판 온도			
D.10.11	9	모터 온도	%	0.10
	정격 작동	온도를 백분율로 표시한 모터 온도 계산값		
D.10.12	1228	모터 예열 상태	-	1
	모터 예열	기능 상태		
	꺼짐 (0),	가열 (1)		
D.10.13	18	토크 기준	%	0.10
	모터 제어	최종 토크 기준		

52. 표: 모터 제어 변수 (출력 전류/전압) 하위 메뉴 항목

D.11 - 다중 펌프 모니터링

IX	ID	이름	단위	스케일		
D.11.1	30	모터 작동	-	1		
	다중 펌프	기능 사용 시 작동 모터 개수				
D.11.2	1113	자동 변경	-	1		
	인버터와 무관 (0)					
	인버터에서	너 요청(1)				

53. 표: 다중 펌프 모니터링

그룹 A - 고급 설정 그룹

A.1 - 제어 위치 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대
A.1.1	172	원격 제어 위치	IO 제어 (0)	-	0	1
	원격 제어 4	위치 선택 (시동/정지).				
	IO 제어 (0)	필드	.버스 제어 (1)			
A.1.2	211	로컬/원격	원격 (0)	-	0	1
	로컬 및 원	격 제어 위치 간 전환합니다.				
	원격 (0)	로컬	(1)			
A.1.3	181	원격에서 로컬 전환 기능	계속 실행 (0)	-	0	2
	원격에서 로컬(키패드) 제어로 이동 시 복사 설정 선택.					
	계속 실행 (0) 계속 실행 및	기준 (1)	정	지 (2)	

54. 표: 제어 위치 하위 메뉴 항목

A.2 - 기준 주파수 (선택 & 한계) 하위 메뉴

IX	ID	이름		기본값		단위	최소	최대	
A.2.1	184	키패드 기준		0.00		Hz	가변	가변	
	해당 파라	미터로 키패드의	의 기준 주파수을 조정	성할 수 있습	늡니다.				
A.2.2	123	키패드 방향		정방향 (())	-	0	1	
	제어 위치	가 키패드인 경	우 모터의 회전 방향.						
	정방향 (0)		Q	방향 (1)					
A.2.3	101	최소 기준 주	파수	0.00		Hz	0.00	가변	
	최소 기준	주파수							
A.2.4	102	최대 기준 주	파수	가변		Hz	가변	320.00	
	최대 기준	주파수							
A.2.5	1285	양의 기준 주	파수 제한	320.00		Hz	-320.00	320.00	
	양의 방향	에 대한 최종 기	준 주파수 제한값						
A.2.6	1286	음의 기준 주	파수 제한	-320.00		Hz	-320.00	320.00	
	음의 방향	에 대한 최종 기	준 주파수 제한값. 여	를 들어 도	그터가 역병	방향으로 실형	행되는 것을 방	지하기	
	위해 본 피	<u> 라미터를 사용</u>	합니다.						
A.2.7	121	키패드 제어 :	기준 선택	키패드 기	준 (1)	-	0	19	
	제어 위치	가 키패드인 경	우 기준 주파수 소스	선택.					
A.2.8	117	IO 제어 기준	A 선택	AIC + AI	V (5)	-	0	19	
	제어 위치	가 I/O A인 경두	² 기준 주파수 소스 신	<u> 1</u> 택.					
A.2.9	131	IO 제어 기준	B 선택	AIV (4)		-	0	19	
	제어 위치	가 I/O B인 경우	- 기준 소스 선택.						
A.2.10	122	필드버스 제이	ㅓ 기준 선택	필드버스	. (2)	-	0	19	
	제어 위치	가 필드버스인	경우 기준 주파수 소:	스 선택.					
	다단속 주	파수 (0)	키패드 기준 (1)	필드	트버스 (2)		AIC (3)		
	AIV (4)		AIC + AIV (5)	PID) 기준 (6)		모터 전위차	계 (7)	
	조이스틱	기준 (8)	조깅 기준 (9)	차단	타 1 (10)		차단 2 (11)		
	차단 3 (12	2)	차단 4 (13)	차단	타 5 (14)		차단 6 (15)		
	차단 7 (16	5)	차단 8 (17)	차던	타 9 (18)		차단 10 (19)		

55. 표: 기준 주파수 (선택 & 한계) 하위 메뉴 항목

A.3 - 기동 및 정지 설정 (& 급속 정지) 하위 메뉴

IX	ID	이름	기본값		단위	최소	최대
A.3.1	114	키패드 정지 버튼	정지 버튼	상시	-	0	1
			활성화 (0)				
	정지 버튼	상시 활성화 (0) 정지 버튼	튼 기능 제한	(1)			
A.3.2	505	기동 방식	램핑 시동	(0)	-	0	1
	램프 기동	(0) 플라잉기	니동 (1)				
A.3.3	506	정지 방식	코스팅 (0)		-	0	1
	코스팅 (0)) 램프 정기	지 (1)				
A.3.4	300	IO A 기동 정지 로직	기동 정지	로직 2	-	0	4
			(2)				
A.3.5	363	IO B 기동 정지 로직	기동 정지	로직 2	-	0	4
			(2)				
	기동 정지	로직 0 (0)		기동 정	지 로직 3	(3)	
	- 제어	신호 1 = 정방향 (상태 제어)		- 제(어 신호 1 :	= 기동 (상	태 제어)
	- 제어	신호 2 = 역방향 (상태 제어)		- 제(어 신호 2 :	= 방향 (상	태 제어)
	- 제어	신호 3 = 미할당			ㅇ 거짓	! = 정방힝	=
	기동 정지	로직 1 (1)			o 참 =	= 역방향	
	- 제어	신호 1 = 정방향 (상승 에지 제어)		- 제(어 신호 3 :	= 미할당	
	- 제어	신호 2 = 역정지 (상태 제어)		기동 정	지 로직 4	(4)	
	- 제어	신호 3 = 역방향 (상승 에지 제어)		- 제(어 신호 1 :	= 기동 (상	승 에지 제어)
	기동 정지	로직 2 (2)		- 제(어 신호 2 :	= 방향 (상	태 제어)
	- 세어	신호 1 = 성방향 (상승 에시 세어)			이 거짓	[= 성방힝 ~~~~	-
	- 세어	신오 2 = 역망양 (상승 에시 세어)		TIL	이 삼 =	= 억망양	
A 2 6	- 세어	신오 5 = 미일당	사스 에지	- 세 피이	기 신오 > :	- 미일당	1
A.5.0	009	월드미 <u>수</u> 지승 도식	· 경금 에지 · (0)	크포	-	0	1
	사수 에지	피오 (0)	(0) 사태 (1)				
A 3 7	524	일표 (0) 시도 지여			大	0.00	60.00
A.J.7	시도 명령	<u> 시장시신</u> 및 실제 이버터이 시독 가 지여	0.00		<u> </u>	0.00	00.00
A.3.10	1276	금속 정지 모드	급속 정지	(1)	-	0	2
	 DI 또는 필	<u></u> 실드버스에서 급속 정지 기능이 확/	<u>' ' ' ' '</u> 성화되었을	때인버티	니가 정지히	- ·는 방식.	_
	코스팅 (0)), 급속 정기	지 (1)	" _ · · 정	지 기능에	따른 정지	(2)
A.3.11	1213	급속 정지 활성화	DIN_Port0	2	-	0	10
			(10) = 참				
	거짓 = 급	·속 정지 활성화					
	선택 가능	한 열거값은 모든 디지털 입력에 [대해 동일합	니다.			
A3.12	1256	급속 정지 감속 시간	3.00		초	0.10	300.00
A.3.13	744	급속 정지에 대한 반응	알람 (1)		-	0	5
	동작 없음	(0)	0	전 기준	주파수 알림	랔 (3)	
	알람 (1)		정	지 모드이	네 따른 고경	장 정지 (4)	
	사전설정	고장 주파수 알람 (2)	프	리런으로	고장 정지	(5)	

56. 표: 시동 및 정지 설정 (& 급속 정지) 하위 메뉴 항목

A.4 - 램프 설정 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대
A.4.1	500	램프 1 형태	0.00	%	0.00	100.00
	가속 및 감=	속 램프의 시동과 끝을 좀 더 매긔	그럽게 할 수 있습니다.			
A.4.2	103	가속 시간 1	5.00	초	0.10	300.00
	출력 주파수	·를 '0'에서 최대 주파수까지 높C	이는 데 필요한 시간을	설정합니다.		
A.4.3	104	감속 시간 1	5.00	초	0.10	300.00
	출력 주파수	·를 최대 주파수에서 '0'까지 줄C	이는 데 필요한 시간을	설정합니다.		
A.4.4	501	램프 2 형태	0.00	%	0.00	100.00
	가속 및 감=	속 램프의 시작과 끝을 좀 더 매긔	그럽게 할 수 있습니다.			
A.4.5	502	가속 시간 2	10.00	초	0.10	300.00
	출력 주파수	·를 '0'에서 최대 주파수까지 높C	이는 데 필요한 시간을	설정합니다.		
A.4.6	503	감속 시간 2	10.00	초	0.10	300.00
	출력 주파수	·를 최대 주파수에서 '0'까지 줄C	이는 데 필요한 시간을	설정합니다.		

57. 표: 램프 설정 하위 메뉴 항목

A.5 - 팬 및 IGBT 제어 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대
A.5.1	600	제어 모드	U/f 주파수 제어 오픈	-	0	2
			루프 (0)			
	U/f 주파수	제어 오픈 루프 (0)				
	속도 제어	오픈 루프 (1)				
	토크 제어	오픈 루프 (2)				
A.5.2	601	스위칭 주파수	가변	kHz	1.50	가변
	스위칭 주피	파수를 높이면 인버터 용량이 줄	들어 듭니다. 케이블 길이가 길	경우 모터 켜	베이블의 진	상
	전류를 줄여	이기 위해 낮은 스위칭 주파수를	를 사용할 것을 권장합니다. 모	터 소음을 줄	이기 위해	높은
	스위칭 주피	파수를 사용하세요.				
A.5.3	1515	과변조	활성화 (1)	-	0	1
	비활성화 (0)				
	활성화 (1)					
A.5.4	2377	팬 제어 모드	최적화 (1)	-	0	1
	상시 켜짐	(0)				
	최적화 (1)					

58. 표: 제어 모드, 스위칭 주파수, 팬 제어 하위 메뉴 항목

A.6 - 개방형	힝루프 제어	파라미터(U/f,	U/f +	슬립보상,	.) 하위	메뉴
-----------	--------	-----------	-------	-------	-------	----

IX	ID	이름	기본값	단위	최소	최대
A.6.1	108	U/f 비율	정토크(선형)	-	0	2
			(0)			
	제로 주파	수와 약계자점 간 U/f 곡선 유형.				
	정토크(선	형)(0) 저감토크(자승	5) (1)	자유니	/f (프로그램밍	가능) (2)
A.6.2	602	약계자점 주파수	가변	Hz	8.00	가변
	약계자점여	이란 출력 전압이 약계자점 전압에 도달	할 때의 출력 주피	·수를 말합	니다.	
A.6.3	603	약계자점 전압	100.00	%	10.00	200.00
	모터 정격	전압 백분율로 표시한 약계자점에서의	전압.			
A.6.4	604	U/f 중간점 주파수	가변	Hz	0.00	가변
	<i>U/f 비율</i> 김	값을 프로그래밍할 경우 해당 파라미터	는 곡선의 중간 주	파수를 제공	공합니다.	
A.6.5	605	U/f 중간점 전압	100.00	%	0.00	100.00
	<i>U/f 비율</i> 김	값을 프로그래밍할 경우 해당 파라미터·	는 곡선의 중간점	전압을 제공	공합니다.	
A.6.6	606	제로 주파수 전압	가변	%	0.00	40.00
	이 파라미	터는 U/f 곡선의 제로 주파수 전압을 제	공합니다			
A.6.7	1590	자동 토크 부스트	비활성화 (0)	-	0	1
	비활성화	(0) 활성화 (1)				
A.6.8	665	토크 부스트 모터 이득	100.00	%	0.00	100.00
	토크 부스	트가 사용될 때 모터링 측 IR- 보상에 C	<u> </u>			
A.6.9	667	토크 부스트 제너레이터 이득	0.00	%	0.00	100.00
	토크 부스	트가 사용될 때 제너레이팅 면 IR- 보상	에 대한 스케일 인	<u>.</u> .		
A.6.10	1412	토크 안정기 이득	50.00	%	0.00	500.00
	오픈 루프	제어 조작 시 토크 안정기 이득.				
A.6.11	1414	약계자점에서의 토크 안정기 이득	50.00	%	0.00	500.00
	오픈 루프	제어 조작 시 약계자점에서의 토크 안	정기 이득			
A.6.12	1413	토크 안정기 감쇄 시정수	0.0050	초	0.0005	1.0000
	토크 안정	기의 감쇄 시정수.				
A.6.13	659	고정자 전압 조정	100.00	%	50.00	150.00
	이를 이용	해 영구 자기 모터에서 고정자 전압을 :	조정합니다.			

59. 표: 오픈 루프 제어 파라미터(U/f, U/f + 슬립보상, ..) 하위 메뉴 항목

A.7 - 토크 제어 파라미터 (오픈/폐쇄) 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대	
A.7.1	1439	키패드 토크 기준	0.00	%	0.00	가변	
	토크 기준	· <i>선택</i> 이 <i>키패드(1)</i> 로 설정된 경우 시	· ·용. 이 파라미터 깂	은 <i>토크 최</i>	<i>대 기준</i> 및 <i>토.</i>	크 최소 기준	
	사이로 제	한합니다.					
A.7.2	641	토크 기준 선택	미사용 (0)	-	0	26	
	토크 기준	· 선택. 토크 기준은 <i>토크 최대 기준</i>	및 <i>토크 최소 기준</i>	값 사이에서	조정됩니다.		
	미사용 (0) 키패드(1)	조이스틱 (2)	AIC	(3)		
	AIV (4)	AI 3 (5)	AI 4 (6)	AI 5	(7)	AI 6 (8)	
	프로세스	데이터 입력 1 (9) 프로세스	데이터 입력 2 (10)	프로	세스 데이터 입	입력 3 (11)	
	프로세스	데이터 입력 4 (12) 프로세스	데이터 입력 5 (13)	프로	세스 데이터 입	입력 6 (14)	
	프로세스	데이터 입력 7 (15) 프로세스	데이터 입력 8 (16)				
	차단 1 (1	7) 차단 2 (18) ;	차단 3 (19)	차단	4 (20)		
	차단 5 (2:	1) 차단 6 (22) :	차단 7 (23)	차단	8 (24)		
	차단 9 (2	5) 차단 10 (26)					
A.7.3	643	토크 최소 기준	0.00	%	-300.00	300.00	
	기준 신호	.의 최소값과 일치하는 토크 기준.					
A.7.4	642	토크 최대 기준	100.00	%	-300.00	300.00	
	기준 신호	.의 최대값과 일치하는 토크 기준. 이 	비 값은 음과 양의 깂	t에 대한 최	대 토크 기준의	으로	
	사용됩니						
A.7.5	1244	토크 기순 필터 시간	0.00	_ 조	0.00	300.00	
	죄송 토크	. 기순에 대한 필터링 시간을 제공합		24		200.00	
A.7.6	1246	토크 기준 물감내		%	0.00	300.00	
	토크 기순	약 0 인 작은 값을 무시하려면 해당	상 값을 0보다 크게	설정하세요.	기순 신호가	0과 0 ± 해당	
	바라미터	값 사이에 있으면 토크 기준은 0으!	로 설성됩니다.		0	1	
A././	1278	토크 세어 수파수 안계 	양/음의 수파수	-	0	L	
		르 이희 초려 조피스 취계 모드 셔드	안계 (U)				
	도크 세어들 위안 술력 수파수 한계 보느 선택. 아(요리 조피스 취계 (0)						
	장/금의 기 기즈 조피	F파구 안계(0) .ㅅ (1)					
Δ78	이군 구피	 	3.00	Hz	0.00	기벼	
A.7.0	030	또는 두드 또그 세이 되도 주파수	3.00	112	0.00	12	
	인버터가	· · · · · · · · · · · · · · · · · · ·	 력 주파수 하하값				
A.7.9	639	오픈 루프 토크 제어 P 이들	0.01	Hz/%	0.00	32000.00	
	개방형 루	·프 제어 모드에서 토크 컨트롤러에) 등 값 1 0으	토크 오루가	
	모터 정격	토크의 1 % 일 때 출력 주파수에서	- 1Hz 변경을 발생기	,립그그다. 시킨니다.		<u> </u>	
A.7.10	640	오픈 루프 토크 제어 I 게인	2.00	Hzs/%	0.00	32000.00	
	개방형 루	·프 제어 모드에서 토크 컨트롤러에	 대한 I 게인을 제공	합니다. I 이	 득값 1.0은 토	크 오차가	
	모터 정격	토크의 1% 일 때 1초에 1.0Hz 에 !	도달하도록 합니다.				

60. 표: 토크 제어 파라미터 (개방형/폐쇄형) 하위 메뉴 항목

A.11 - 모터 제한 & 억제 (브레이크 초퍼 모드) 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대			
A.11.1	107	모터 전류 제한	가변	А	0.1I _{HD}	Is			
	인버터의 2	최대 모터 전류							
A.11.2	1287	모터 토크 한계	300.00	%	0.00	300.00			
	모터링의 3	모터링의 최대 토크 제한							
A.11.3	1288	발전 토크 한계	300.00	%	0.00	300.00			
	발전 시의	발전 시의 최대 토크 한계.							
A.11.4	1290	모터 전력 한계	300.00	%	0.00	300.00			
	모터링의 결	최대 전력 한계.							
A.11.5	1289	발전 전력 한계	300.00	%	0.00	300.00			
	제너레이터링의 최대 출력 한계.								
A.11.11	3073	브레이크 초퍼 모드	비활성화 (0)	-	0	3			
	비활성화 (0) 실행 활성화 (1)	실행 정지 활성화 (2)	시험 미	실행 활성화	· (3)			
A.11.15	607	과전압 제어	활성화 (1)	-	0	1			
	비활성화 (0)	활성화 (1)						
A.11.21	608	부족 전압 제어	활성화 (1)	-	0	1			
	비활성화 (0)	· 활성화 (1)	-					

61. 표: 모터 제한 & 억제 (브레이크 초퍼 모드) 하위 메뉴 항목

A.12 - 감시 하위 메뉴

IX	ID	이름		기본	·값	단위	최소	최대
A.12.1	1431	감시 번호 1 형	항목 선택	출력	주파수 (0)	-	0	17
	출력 주파-	수 (0)	기준 주파수 (1)		모터 전류 (2)	5	그터 토크 (3)	
	모터 출력	(4)	DC 링크 전압 (5)		아날로그 입력 1	(6) 0	 날로그 입릭	ᅾ 2 (7)
	아날로그 '	입력 3 (8)	아날로그 입력 4 (9)		아날로그 입력 5	(10) 0	ᅡ날로그 입릐	‡ 6 (11)
	온도 입력	1 (12)	온도 입력 2 (13)		온도 입력 3 (14)	된	은도 입력 4 (15)
	온도 입력	5 (16)	온도 입력 6 (17)					
A.12.2	1432	감시 번호 1 5	2드	미사	-용 (0)	-	0	2
	미사용 (0)	한계 내	하한 감시 출력 활성	화 (1)	한계 이 [,]	상 상한 감기	│ 출력 활성	화 (2)
A.12.3	1433	감시 번호 1 현	한계	25.0	0	가변	0.00	50.00
	설정 항목(게 대한 감시 한	계.					
A.12.4	1434	감시 번호 1 현	한계 히스테리시스	5.00		가변	0.00	50.00
	설정 항목(게 대한 감시 한	계 히스테리시스.					
A.12.5	1435	감시 번호 2 형	항목 선택	기준	· 주파수 (1)	-	0	17
	출력 주파-	수 (0)	기준 주파수 (1)		모터 전류 (2)	5	L터 토크 (3)	
	모터 출력	(4)	DC 링크 전압 (5)		아날로그 입력 1	(6) 0	 날로그 입릭	ᅾ 2 (7)
	아날로그 '	입력 3 (8)	아날로그 입력 4 (9)		아날로그 입력 5	(10) 0	 날로그 입릭	훅 6 (11)
	온도 입력	1 (12)	온도 입력 2 (13)		온도 입력 3 (14)	된	은도 입력 4 (15)
	온도 입력	5 (16)	온도 입력 6 (17)					
A.12.6	1436	감시 번호 2 5	2드	미사	-용 (0)	-	0	2
	미사용 (0)	한계 내	하한 감시 출력 활성	화 (1)	한계 이	상 상한 감시	↓ 출력 활성	화 (2)
A.12.7	1437	감시 번호 2 현	한계	40.0	0	가변	0.00	50.00
	설정 항목(에 대한 감시 한	계.					
A.12.8	1438	감시 번호 2 현	한계 히스테리시스	5.00		가변	0.00	50.00
	설정 항목(에 대한 감시 한	계 히스테리시스.					

62. 표: 감시 하위 메뉴 항목

A.13 - 일반 보호 설정 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대	
A.13.1	701	외부 고장에 대한 반응	정지 모드에	-	0	5	
			따른 고장 정지				
			(4)				
	동작 없음	(0)	이전 기준 주파	수 알람 (3)			
	알람 (1)		정지 모드에 따	른 고장 정기	(4)		
	사전설정 :	고장 주파수 알람 (2)	프리런으로 고장 정지 (5)				
A.13.2	730	입력 상 고장	3상 지원 (0)	-	0	1	
	단상 공급	장치를 사용하는 경우, 값은 반드시 단	난상 지원이어야 합니	다.			
	3상 지원 (0),	단상 지원 (1)				
A.13.3	727	부족 전압 고장	이력에 저장된	-	0	1	
			고장 (0)				
	이력에 저	장된 고장 (0)	이력에 저장되기	지 않은 고징	(1)		
A.13.4	702	출력상 고장에 대한 반응	정지모드에 따른	-	0	5	
			고장정지(4)				
A.13.5	733	필드버스 통신 고장에 대한 반응	정지모드에 따른	-	0	5	
			고장정지(4)				
A.13.8	748	PID 소프트 필 고장	정지모드에 따른	-	0	5	
			고장정지(4)				
A.13.9	749	PID 감시 고장에 대한 반응	정지모드에 따른	-	0	5	
			고장정지(4)				
A.13.10	757	외부 PID 감시 고장에 대한 반응	정지모드에 따른	-	0	5	
			고장정지(4)				
A.13.11	703	접지 고장	프리런으로 고장	-	0	5	
			정지 (5)				
	동작 없음	(0)	이전 기준 주파	·수 알람 (3)			
	알람 (1)		정지 모드에 따	·른 고장 정기	5 (4)		
	사전설정 .	고장 주파수 알람 (2)	프리런으로 고	장 정지 (5)			
A.13.12	183	사전설정 알람 주파수	25.00	Hz	가변	가변	
	고장 반응(이 <i>알람</i> 사전설정 <i>고장 주파수(2)</i> 인 경	우 사용.				
A.13.13	775	안전 토크 차단 고장에 대한	프리런으로	-	0	5	
		반응	고장 정지 (5)				
	동작 없음	(0)	이전 기준 주파	수 알람 (3)			
	알람 (1)		정지 모드에 따	·른 고장 정기	5 (4)		
	사전설정 :	고장 주파수 알람 (2)	프리런으로 고?	장 정지 (5)			

63. 표: 일반 보호 설정 하위 메뉴 항목

A.14 - 모터 보호 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대		
A.14.1	709	모터 정지 고장	동작 없음 (0)	-	0	5		
	동작 없음	(0)	이전 기준	주파수 알람	(3)			
	알람 (1)		정지 모드0	네 따른 고장	정지 (4)			
	사전설정 .	고장 주파수 알람 (2)	프리런으로	고장 정지 (5)			
A.14.2	710	스톨 전류	3.70	A	0.00	5.20		
	정지 상태	가 발생하는 경우, 전류는 이 한계깂	<u> :</u> 이상이어야 합니다	다.				
A.14.3	711	정지 시간 한계	15.00	초	1.00	120.00		
	최대 정지	상태 시간입니다.						
A.14.4	712	정지 주파수 한계	25.00	Hz	1.00	가변		
	정지 상태	가 발생하는 경우, 출력 주파수 특정	성 시간 동안 이 한겨	값 이하여야	합니다.			
A.14.10	3030	과토크 보호에 대한 반응	동작 없음 (0)	-	0	5		
	동작 없음	(0)	이전 기준 -	주파수 알람	(3)			
	알람 (1)		정지 모드0	ㅔ 따른 고장	정지 (4)			
	사전설정 .	고장 주파수 알람 (2)	프리런으로	. 고장 정지 (5)			
A.14.11	3031	모터 과토크 한계	300.00	%	0.00	300.00		
		1	1					
A.14.20	3028	부족 토크 보호에 대한 반응	동작 없음 (0)	-	0	5		
	동작 없음	(0)	이전 기준	주파수 알람	(3)			
	알람 (1)		정지 모드0	네 따른 고장	정지 (4)			
	사전설정 .	고장 주파수 알람 (2)	프리런으로	. 고장 정지 (5)			
A.14.21	3029	모터 부족 토크 한계	0.00	%	0.00	300.00		
					1			
A.14.30	713	부족 부하 고장	동작 없음 (0)	-	0	5		
	동작 없음	(0)	이전 기준	주파수 알람	(3)			
	알람 (1)		정지 모드이	ㅔ따른 고장	정지 (4) 			
	사전설정	고장 수파수 알람 (2)	프리런으로	. 고장 정지 (5)	150.00		
A.14.31	/14	부속 부하 보호 약계사 영역	50.00	%	10.00	150.00		
		무아						
. 1 4 22	물덕 수파 [:]	수가 약계사점보다 큰 경우에 가능?	안 쇠소 도크 값을 / 1000	예공압니다.	F 00	150.00		
A.14.32	/15	부쪽 부아 모오 세로 수파주	10.00	%	5.00	150.00		
		누아 스킨 기능히 치소 도그에 대히 가의	계고하니다다.	저거 저르(()	112) 피기미(-1 710		
	에도 구파 [.] 비겨하며 :	제로 수파수가 가능한 최소 토크에 대한 값을 제공합니다. 모터 정격 전류(ID 113) 파라미터 값을						
A 1/ 22	16 원양야민	애강 피다미너는 기존없으도 지승 -	축구립니니. 20.00	*	2.00	600.00		
A.14.55	기미 비조	구축 구야 모오 시간 안게 특히 사태 시간이니다	20.00	<u>오</u>	2.00	000.00		
Δ 14 40	- 의대 구국 - 704	무약 경대 시간합니다.	저지 ㅁㄷ에 따르	_	0	5		
A.14.40	704	エ니 걸 エ 오 	고자 저지 (4)			5		
	도자 어으	(0)	이저기즈	 즈파스 아라	(3)			
	이 파 파 머 아라 (1)	(0)	어린 기군 · 정지 모드0	ᅮᆈᅮᆯᆷ ᅦ따르 고장	(J) 전지 (4)			
	르 · · · · · · · · · · · · · · · · · ·	고장 주파수 악람 (2)	고기러으로	"	5)			
A.14.41	705	주위 온도	40.00	가변	-20.00	100 00		
	주위 오도			1.15	20.00	100.00		

IX	ID	이름	기본값	단위	최소	최대		
A.14.42	706	제로 속도 냉각 인자	가변	%	5.00	150.00		
	모터가 외부 냉각 없이 정격 속도에서 작동하는 지점과 관련하여 속도 0에서의 냉각 인자를							
	제공합니디	제공합니다.						
A.14.43	707	모터 열 시간 상수	가변	분	1.00	200.00		
	시간 상수	는 계산한 열 단계가 최종 값의 63%	6에 도달하는 시간을	· 말합니다.				
A.14.44	708	모터 열 부하능	100.00	%	10.00	150.00		

64. 표: 모터 보호 하위 메뉴 항목

A.16 - AI 하한 보호 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대		
A.16.1	767	아날로그 입력 하한 보호	비보호 (0)	-	0	2		
	비보호 (0)							
	실행 상태에서 보호 활성화 (1) 실행 및 정지 상태에서 보호 활성화 (2)							
A.16.2	700	아날로그 입력 하한 고장 응답	프리런으로 고장	-	0	5		
			정지 (5)					
	동작 없음	(0)	이전 기준 주파수 알람 (3)					
	알람 (1) 정지 모드에 따-)			
	사전설정 고장 주파수 알람 (2) 프리런으로 고장 정지 (5)							

65. 표: 저AI 보호 하위 메뉴 항목

A.17 - 주파수 명령 손실 보호 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대		
A.17.1	3032	주파수 명령 손실에 대한 반응	정지 모드에	-	0	5		
			따른 고장 정지					
			(4)					
	동작 없음 (0) 알람 (1)		이전 기준 주파수 알람 (3)					
			정지 모드에 따른 고장 정지 (4)					
	사전설정 .	고장 주파수 알람 (2)	프리런으로 고장 정	성지 (5)				

66. 표: 주파수 명령 손실 보호 하위 메뉴 항목

A.18 - 모터 속도 보호 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대	
A.18.1	3033	저속 반응	정지모드에 따른	-	0	5	
			고장정지(4)				
	동작 없음 (0)	이전 기준 주파수 알람 (3)				
	알람 (1)		정지 모드에 [따른 고장 정기	지 (4)		
	사전설정 고	장 주파수 알람 (2)	프리런으로 고장 정지 (5)				
A.18.2	3034	저속 레벨	0	rpm	0	19200	
	저속 보호 레벨.						
A.18.3	3035	저속 시간 한계	0.00	초	0.00	300.00	
	저속 보호 지연 시간.						
A.18.4	3036	과속 반응	정지모드에 따른	-	0	5	
			고장정지(4)				
	동작 없음 (0)		이전 기준 주파수 알람 (3)				
	알람 (1)		정지 모드에 따른 고장 정지 (4)				
	사전설정 고	장 주파수 알람 (2)	프리런으로 그	1장 정지 (5)			
A.18.5	3037	과속 레벨	0	rpm	0	19200	
	과속 보호 리	네벨.					
A.18.6	3038	과속 시간 한계	0.00	초	0.00	300.00	
	과속 보호 지	지연 시간.					

67. 표: 모터 속도 보호 하위 메뉴 항목

A.19 - 사용자 정의 보호 하위 메뉴

IX	ID	이름	기본값		단위	최소	최대
A.19.1	15523	사용자 정의 고장 1	DIN_Port0	1 (9) =	-	0	10
		활성화	거짓				
	참 = 사용자	정의 고장 1이 활성화되었습니	다.				
	선택 가능한	열거값은 모든 디지털 입력에	대해 동일합	니다.			
A.19.2	15525	사용자 정의 고장 1에	프리런으로 고장		-	0	3
		대한 반응	정지 (5)				
	동작 없음 (0)	0	전 기준 주파	수 알람 (3)		
	알람 (1) 정지 모드어					(4)	
	사전설정 고	장 주파수 알람 (2)	람 (2) 프리런으로 고장 정지 (5)				
A.19.3	15524	사용자 정의 고장 2	DIN_Port0	1 (9) =	-	0	10
		활성화	거짓				
	참 = 사용자 정의 고장 2가 활성화되었습니다.						
	선택 가능한	열거값은 모든 디지털 입력에	대해 동일합	니다.			
A.19.4	15526	사용자 정의 고장 2에	프리런으로	르 고장	-	0	3
		대한 반응	정지 (5)				
	동작 없음 (0)	0	전 기준 주파	수 알람 (3)		
	알람 (1) 정지 모드에 따				른 고장 정지	(4)	
	사전설정 고	장 주파수 알람 (2)	프리런으로 고장 정지 (5)				

68. 표: 사용자 정의 고장 하위 메뉴 항목

A.20 - 폴트 리셋 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대	
A.20.1	3069	수동 리셋		-	0	1	
	동작 없음	(0)	활성화 고장 리셋 (1)				
A.20.2	731	자동 리셋	비활성화 (0)	-	0	1	
	비활성화	(0)	활성화 (1)				
A.20.3	719	재시동 기능	시동 기능에 따름 (1)	-	0	1	
	자동 리셋 시동 모드 선택.						
	플라잉 시	동 (0)	시동 기능에 따름 (1)				
A.20.4	717	대기 시간	0.50	초	0.10	10000.00	
	첫 번째 리	셋을 시행하기 전 대기 시간.					
A.20.5	718	시험 시간	60.00	초	0.00	10000.00	
	시험 시간이 지나서도 고장 상태가 지속되는 경우, 인버터가 이동합니다.						
A.20.6	759	시험 횟수	4	회	1	10	
	총 시험 횟수 고장 유형이 시험 횟수에 영향을 미치지 않습니다. 인버터가 시험 횟수 및 설정 시험						
	시간을 리	셋할 수 없는 경우, 고장이 표시 [.]	됩니다.				
A.20.7	720	부족 전압 자동 리셋	자동 리셋 허용 (1)	-	0	1	
A.20.8	721	과전압 자동 리셋	자동 리셋 허용 (1)	-	0	1	
A.20.9	722	과전류 자동 리셋	자동 리셋 허용 (1)	-	0	1	
A.20.10	723	저AI 자동 리셋	자동 리셋 허용 (1)	-	0	1	
A.20.11	724	장치 과온도 자동 리셋	자동 리셋 허용 (1)	-	0	1	
A.20.12	725	모터 과온도 자동 리셋	자동 리셋 허용 (1)	-	0	1	
A.20.13	726	외부 고장 자동 리셋	자동 리셋 없음 (0)	-	0	1	
A.20.14	738	부족 부하 고장 자동 리셋	자동 리셋 없음 (0)	-	0	1	
A.20.15	776	PID 감시 고장 자동 리셋	자동 리셋 없음 (0)	-	0	1	
A.20.16	777	외부 PID 프로세스 감시	자동 리셋 없음 (0)	-	0	1	
		고장 자동 리셋					
	자동 리셋	없음 (0)	자동 리셋 허용 (1)				

69. 표: 자동 고장 리셋 하위 메뉴 항목

A.21 - 기동 및 정지 시 DC 제어 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대		
A.21.1	517	기동 자화 전류	가변	А	0.00	가변		
	기동 시 모	.터에 공급하는 DC 전류를 규정합니다						
	비활성화	(0)						
A.21.2	516	기동 자화 시간	0.00	초	0.00	600.00		
	이 파라미	터는 가속 시작 전 DC 전류를 모터에 -	공급하는 시간을 규 [;]	정합니다.				
A.21.3	507	DC 브레이크 전류	가변	А	가변	가변		
	DC 제동 중 모터에 주입되는 전류를 규정합니다.							
	비활성화	(0)						
A.21.4	508	정지 시 DC 제동 시간	0.00	초	0.00	600.00		
	모터가 정	지할 때 브레이킹의 전원 여부 및 DC-	브레이크의 제동 시	간을 결정힙	¦니다.			
A.22.5	515	램프 정지 시 DC 제동을	0.00	%	0.10	50.00		
		시작하는 주파수						
	DC- 제동(이 적용될 때의 출력 주파수.						

70. 표: 시동 및 정지 시 DC 제어 하위 메뉴 항목

A.22 - 플럭스 제동 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대	
A.22.1	519	플럭스 제동 전류	0	А	0	I _{LD}	
	플럭스 제동에 대한 전류 레벨을 제공합니다.						

71. 표: 플럭스 제동 하위 메뉴 항목

A.23 - 다단속 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대		
A.23.1	182	다단속 주파수 모드	바이너리 코드 (0)	-	0	1		
	활성화된	활성화된 다단속 속도 디지털 입력 수가 다단속 주파수를 규정합니다.						
	바이너리	코드 (0)						
	입력 수 (1	_)						
A.23.2	180	다단속 주파수 0	5.00	Hz	가변	가변		
	디지털 입	」력 "다단속 주파수 선택 A"에 대	한 물리적 입력값을 선택	합니다.				
A.23.3	105	다단속 주파수 1	10.00	Hz	가변	가변		
	디지털 입	」력 "다단속 주파수 선택 A"에 대	한 물리적 입력값을 선택	합니다.				
A.23.4	106	다단속 주파수 2	15.00	Hz	가변	가변		
	디지털 열	입력 "다단속 주파수 선택 B"에 대	한 물리적 입력값을 선택	합니다.				
A.23.5	126	다단속 주파수 3	20.00	Hz	가변	가변		
	디지털 입	↓력 "다단속 주파수 선택 A & B"(에 대한 물리적 입력값을	선택합니디	ŀ.			
A.23.6	127	다단속 주파수 4	25.00	Hz	가변	가변		
	디지털 입력 "다단속 주파수 선택 C"에 대한 물리적 입력값을 선택합니다.							
A.23.7	128	다단속 주파수 5	30.00	Hz	가변	가변		
	디지털 입력 "다단속 주파수 선택 A & C"에 대한 물리적 입력값을 선택합니다.							
A.23.8	129	다단속 주파수 6	40.00	Hz	가변	가변		
	디지털 입력 "다단속 주파수 선택 A & B"에 대한 물리적 입력값을 선택합니다.							
A.23.9	130	다단속 주파수 7	50.00	Hz	가변	가변		
	디지털 입력 "다단속 주파수 선택 A & B & C"에 대한 물리적 입력값을 선택합니다.							
A.23.10	419	다단속 주파수 선택 A	DIN_PortA4 (4)	-	0	10		
	옵션 다단속 주파수 선택 소스.							
	선택 가능한 열거값은 모든 디지털 입력에 대해 동일합니다.							
A.23.11	420	다단속 주파수 선택 B	DIN_PortA5 (5)	-	0	10		
	옵션 다단속 주파수 선택 소스.							
	선택 가능	한 열거값은 모든 디지털 입력에	대해 동일합니다.					
A.23.12	421	다단속 주파수 선택 C	DIN_Port01 (9) =	-	0	10		
			거짓					
	옵션 다단	속 주파수 선택 소스.						
	선택 가능한 열거값은 모든 디지털 입력에 대해 동일합니다.							

72. 표: 다단계 속도 하위 메뉴 항목

A.24 - 모터 절체 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대			
A.24.1	653	모터 스위치	비활성화 (0)	-	0	1			
	이 기능을 활성화하는 경우, 모터 스위치가 닫히고 열릴 때 플라잉 시동 등에서 인버터가 이동하지								
	않습니다.								
	비활성화 (0)								
	활성화 (1)							

73. 표: 모터 스위치 하위 메뉴 항목

A.25 - 플라잉 기동 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대		
A.25.1	1590	플라잉 시동 옵션	0	-	0	63		
	체크박스 선택							
	B0 = 기준 주파수와 동일한 방향에서만 샤프트 주파수를 검색합니다.							
	B1 = AC 스캐닝을 비활성화합니다.							
	B4 = 기준 주파수를 초기 추정치로 이용합니다.							
	B5 = DC 펄스를 비활성화합니다.							
A.25.2	1610	플라잉 시동 스캔 전류	45.00	%	0.00	100.00		
	모터 정격	전류의 백분율로 표시.						

74. 표: 플라잉 시동 하위 메뉴 항목

A.27 - 에너지 최적화 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대			
A.27.1	666	에너지 최적화	비활성화 (0)	-	0	1			
	에너지를 절약하고 모터 소음을 줄이기 위해 인버터가 최소 모터 전류를 찾습니다. 이 기능은 팬 및								
	펌프 프로세스 등에 활용할 수 있습니다. 빠른 PID 제어 프로세스로는 해당 기능을 이용하지 마세요.								
	비활성화 (0)								
	활성화 (1)								

75. 표: 에너지 최적화 하위 메뉴 항목

A.28 - 부하 드룹 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대	
A.28.1	620	부하 드룹	0.00	%	0.00	20.00	
	해당 기능은	부하 기능으로 속도 저하를 활성	성화합니다. 부하 드룹은	은 정격 부하이	에서 정격 속!	도의	
	백분율로 주	어집니다.					
A.28.2	656	부하 드룹 시간	0.00	초	0.00	2.00	
	부하가 변할 때 로드 드룹을 이용해 동적 속도 드룹을 얻으세요. 이 파라미터는 속도가 변경 사항의						
	63%를 복구하는 시간을 제공합니다.						
A.28.3	1534	부하 드룹 모드	정상 (0)	-	0	1	
	정상 (0) = 부하 드룹 인자가 주파수 범위에서 상수입니다.						
	선형 제거 (1) = 부하 드룹이 정격 주파수부터 제로 주파수까지 선형으로 제거됩니다.						

76. 표: 부하 드룹 하위 메뉴 항목

A.29 - 모터 전위차계 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대	
A.29.1	418	모터 전위차계 상승	DIN_Port01 (9)	-	0	10	
			= 거짓				
	참 = 모터	전위차계 기준이 증가합니다.					
	선택 가능	한 열거값은 모든 디지털 입력에 대해 등	동일합니다.				
A.29.2	417	모터 전위차계 하강	DIN_Port01 (9)	-	0	10	
			= 거짓				
	참 = 모터 전위차계 기준이 감소합니다.						
	선택 가능	한 열거값은 모든 디지털 입력에 대해 등	동일합니다.				
A.29.3	331	모터 전위차계 램프 시간	10.00	Hz/s	0.10	500.00	
	<i>모터 전위차계 상승</i> 또는 <i>모터 전위차계 하강</i> 으로 모터 전위차계 기준이 증가 또는 감소할 때 이의						
	변화율.						
A.29.4	367	모터 전위차계 리셋	정지 시 리셋	-	0	2	
			(1)				
	모터 전위:	차계 기준 주파수에 대한 리셋 로직.					
	리셋 안함	(0) 정지 시 리셋	(1)	전원 차단	시 리셋 (2)		

77. 표: 모터 전위차계 하위 메뉴 항목

A.30 - 조깅 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대	
A.30.1	532	DI 조깅 활성화	DIN_Port01 (9)	-	0	10	
			= 거짓				
	참 = DI 제	어 조깅 활성화.					
	선택 가능협	한 열거값은 모든 디지털 입력에 대히	ዘ 동일합니다.				
A.30.2	530	조깅 기준 1 활성화	DIN_Port01 (9)	-	0	10	
			= 거짓				
	참 = DI 제어 조깅 즉시 시동.						
	선택 가능협	한 열거값은 모든 디지털 입력에 대히	ዘ 동일합니다.				
A.30.3	531	조깅 기준 2 활성화	DIN_Port01 (9)	-	0	10	
			= 거짓				
	참 = DI 제어 조깅 즉시 시동.						
	선택 가능협	한 열거값은 모든 디지털 입력에 대히	ㅐ동일합니다.				
A.30.4	1239	조깅 기준 1	0.00	Hz	가변	가변	
	조깅 기준 1이 활성화되었을 때 기준 주파수를 제공합니다.						
A.30.5	1240	조깅 기준 2	0.00	Hz	가변	가변	
	조깅 기준 2가 활성화되었을 때 기준 주파수를 제공합니다.						
A.30.6	1257	조깅 램프	10.00	초	0.10	300.00	
	조깅 기능이 활성화되었을 때 가속 및 감속 시간을 제공합니다.						

78. 표: 조깅 하위 메뉴 항목
A.31 - 조이스틱 하위 메뉴

IX	ID	이름		기본값	단위	최소	최대
A.31.1	451	조이스틱 신호 선택		미선택 (0)		0	19
	미선택 (0)						
	AIN_PortA	1 (1)		AIN_PortA2 (2)			
	AIN_Port02	1(10) = 10%	AIN_Port	02 (11) = 20 %			
	AIN_Port03	12) = 30 % AIN_Port04 (13) = 40 %					
	AIN_Port0	5 (14) = 50 %	AIN_Port	06 (15) = 60 %			
	AIN_Port07	7 (16) = 70 %	AIN_Port	08 (17) = 80 %			
	AIN_Port09	9 (18) = 90 %	AIN_Port	10 (19) = 100 %			
A.31.2	384	조이스틱 불감대		2.00	%	0.00	20.00
	기준이 0괴	·0 ± 해당 파라미터 사이	이에 있으던	변 기준은 0으로 설정됩니	- 다.		
A.31.3	385	조이스틱 슬립 지대		0.00	%	0.00	20.00
	조이스틱 기	기준이 슬립 지연보다 더	오래 슬립] 지대에 있게 되면 인버	너터가 정지힡	ነ니다. 슬립	기능은
	조이스틱으	로 기준 주파수를 제어할	할 때에만	이용 가능합니다.			
	0 = 미사용						
A.31.4	386	조이스틱 슬립 지연		0.00	초	0.00	300.00
	조이스틱 기	기준이 슬립 지연보다 더	오래 슬립	님 지대에 있게 되면 인버	너터가 정지힡	·니다. 슬립	기능은
	조이스틱으	로 기준 주파수를 제어할	할 때에만	이용 가능합니다.			

79. 표: 조이스틱 하위 메뉴 항목

A.32 - 기계식 브레이크 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대		
A.32.1	1541	브레이크 제어	비활성화 (0)	-	0	2		
	비활성화	(0) = 기계식 브레이크 제어를 이용	용하지 않습니다.					
	활성화 (1)	= 기계식 브레이크 제어를 이용혀	아지만 브레이크 상태를	감시하지 읺	낳습니다.			
	브레이크	상태 감시 활성화 (2) = 기계식 브	레이크 제어를 이용하며	디지털 입력	력 신호가 브리	베이크		
	상태를 모	니터링합니다.						
A.32.2	353	브레이크 기계적 지연	0.00	초	0.00	60.00		
	브레이크를	를 개방하는 데 필요한 기계적 지연	ļ.					
	브레이크	개방 명령이 주어진 후, 속도는 <i>브</i> ,	<i>레이크 기계적 지연</i> 이 단	만료될 때까기	지 <i>브레이크 .</i>	개방		
	<i>주파수 한계</i> 파라미터 값에 머물게 됩니다.							
A.32.3	1535	브레이크 개방 주파수 한계	2.00	Hz	가변	가변		
	기계식 브	레이크 개방에 대한 주파수 한계. 3	기계식 브레이크를 개빙	하기 위한 !	드라이브의 출	특력 주파수		
	한계. 드라	이브의 출력 주파수는 브레이크 기	계적 지연이 끝날 때끼	ト지 해당 수취	준에 머무르미	1,		
	시스템은	정확한 옵션 브레이크 피드백 신호	를 수신합니다.					
A.32.4	1539	브레이크 폐쇄 주파수 한계	2.00	Hz	가변	가변		
	기계식 브레이크 폐쇄에 대한 주파수 한계. 기계식 브레이크를 폐쇄하기 위한 드라이브의 출력 주파수							
	한계. 드라	이브가 정지하고 출력 주파수가 0	가까이 수렴합니다. 해	당 파라미터	를 양과 음의	2		
	방향으로	이용할 수 있습니다.		1				
A.32.5	1085	브레이크 전류 한계	0.00	A	0.00	가변		
	모터 전류가 해당 값 이하로 떨어지면 기계식 브레이크가 즉시 폐쇄됩니다. 드라이브가 약계자							
	영역에서	작동하는 경우, 브레이크 전류 한겨	비는 출력 주파수 기능으 ·	으로 자동으로	ᆜ 감소합니다 └			
A.32.6	352	브레이크 고장 지연	2.00	초	0.00	60.00		
	정확한 브	레이크 피드백 신호가 이 지연 시견	안 동안 수신되지 않는 ?	경우, 고장이	표시됩니다.	이러한		
	지연은 <i>브</i>	<i>레이크 제어</i> 값이 <i>브레이크 상태 끝</i>	<i>감시 활성화</i> 로 설정된 경	경우에만 이용 □	용됩니다.			
A.32.7	1316	브레이크 고장에 대한 반응	동작 없음 (0)		0	5		
	동작 없음	(0)	이전 기준 주피	다수 알람 (3))			
	알람 (1)		정지 모드에 띠	다른 고장 정	지 (4)			
	사전설정	고장 주파수 알람 (2)	프리런으로 고	.장 정지 (5)				
A.32.8	1210	기계식 브레이크 피드백	DIN_Port01 (9) =	-	0	10		
			거짓					
	이 디지털	입력 신호를 기계식 브레이크의 브	보조 접촉면과 연결하세	요.				
	선택 가능	한 열거값은 모든 디지털 입력에 더	내해 동일합니다.					

80. 표: 기계식 브레이크 하위 메뉴 항목

A.33 - 금지 주파수 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대
A.33.1	509	금지 주파수 범위 1 하한	0.00	Hz	0.00	320.00
A.33.2	510	금지 주파수 범위 1 상한	0.00	Hz	0.00	320.00
A.33.3	511	금지 주파수 범위 2 하한	0.00	Hz	0.00	320.00
A.33.4	512	금지 주파수 범위 2 상한	0.00	Hz	0.00	320.00
A.33.5	513	금지 주파수 범위 3 하한	0.00	Hz	0.00	320.00
A.33.6	514	금지 주파수 범위 3 상한	0.00	Hz	0.00	320.00
A.33.7	518	램프 시간 인자	1.00	회	0.10	10.00

81. 표: 금지 주파수 하위 메뉴 항목

A.34 - 모터 예열 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대			
A.34.1	1225	모터 예열 기능	미사용 (0)	-	0	4			
	- 미사용	응 (0) = 모터 예열 기능이 비활성화됩니	- 다.						
	- 상시 7	정지 상태 (1) = 드라이브가 정지 상태'	일 때 항상 모터 예열 기	능이 활성호	화됩니다.				
	- DI 제어 (2) = 드라이브가 정지 상태일 때								
	디지틸	디지털 입력 신호가 모터 예열 기능을 활성화합니다.							
	- 온도 현	한계 (3) = 드라이브가 정지 상태이고							
	드라이	브 방열판의 온도가 예열 온도 한계로	실설정한 온도 한계 이혀	하로 떨어지는	는 경우, 모터	터 예열			
	기능0	활성화됩니다.							
			1						
A.34.2	1226	예열 온도 한계	0	가변	-20	100			
	방열판 온	도 또는 측정된 모터 온도가 해당 레벨	이하로 떨어지는 경우,	또한, 모터	예열 기능여	이 <i>온도</i>			
	<i>한계(3)</i> 또	는 <i>온도 한계 측정 모터 온도(4)</i> 로 설정	성된 경우에 모터 예열이	활성화됩니	[다.				
A.34.3	1227	모터 예열 전류	가변	А	0	가변			
	정지 상태(에서 모터 및 인버터의 예열에 필요한	DC 전류.						
A.34.4	1044	모터 예열 켜짐	DIN_Port01 (9) =	-	0	10			
			거짓						
	옵션 모터	에열 제어 소스. 할당된 경우, 참 = 모	터 예열 허용.						
	선택 가능	한 열거값은 모든 디지털 입력에 대해	동일합니다.						

82. 표: 모터 예열 하위 메뉴 항목

A.35 - 화재 모드 하위 메뉴

IX	ID	이름		기본값	단위	최소	최대		
A.35.1	1599	화재 모드 비	밀번호	0	-	0	9999		
	화재 모드	기능에는 시험	모드 및 활성 모드 등 2		다. 모드를 신		화재 모드		
	비밀번호어	서 비밀번호를	적어 주세요. 시험 모드	드에서 고장 발생 시	인버터가 정	지합니다. 0			
	파라미터로	^로 화재 모드 기 [.]	능의 모드를 선택하세요	2.					
	1002 = 활·	성화 = 드라이.	브가 모든 고장을 리셋혀	하고 계속해서					
	더 이상 가	능하지 않을 따	까지 동일한 속도로 작	동합니다.					
	1234 = 시	험 모드 = 드리	이브가 고장을 자동으로	로 리셋하지 않으며					
	고장 발생	시 드라이브가	정지합니다.						
A.35.2	1617	화재 모드 주	파수 소스	화재 모드	-	0	18		
				주파수 (0)					
	화재 모드	화재 모드 활성화 시 기준 주파수 소스 선택. 화재 모드 작동 시 AIC 또는 PID 컨트롤러 등을 기준							
	소스로 선택	택할 수 있습니	다.						
	화재 모드	주파수 (0)	다단속 속도 (1)	키패드 (2)	I	필드버스 (3)			
	AIC (4)		AIV (5)	AIC + AIV (6)	P	PID 1 (7)			
	모터 전위기	· 여 (8)	차단 1 (9)	차단 2 (10)	オ	자단 3 (11)			
	차단 4 (12))	차단 5 (13)	차단 6 (14)	オ	자단 7 (15)			
	차단 8 (16))	차단 9 (17)	차단 10 (18)					
A.35.3	1598	화재 모드 주	파수	50.00	Hz	8.00	가변		
	화재 모드	활성화 시 사용	·되는 주파수. <i>화재 모드</i>	E <i>주파수 소스</i> 값이 3	화재 모드 주	<i>파수</i> 인 경우	-		
	인버터는 혀	해당 주파수를	사용합니다.						
A.35.4	1596	화재 모드 활	성화 개방	DIN_Port02	-	0	10		
				(10) = 참					
	거짓 = 화기	대 모드 활성화							
	선택 가능협	한 열거값은 모	든 디지털 입력에 대해	동일합니다.					
	해당 디지털	털 입력 신호 유	·형은 NC (상시 닫힘)입	니다.					
A.35.5	1619	화재 모드 활	성화 폐쇄	DIN_Port01 (9)	-	0	10		
				= 거짓					
	참 = 화재	모드 활성화							
	선택 가능협	한 열거값은 모	든 디지털 입력에 대해	동일합니다.					
	해당 니시	별 입력 신호 유	·형은 NO (상시 열림)입				10		
A.35.6	1618	화재 모드 역	방향	DIN_Port01 (9)	-	0	10		
				= 거싯	<u></u>				
	거싯 = 화/	내 모드 왈성화	시 성방향 회선	잠 = 화새 보느	왈성화 시 ⁽	격방향 회선			
	선택 가등업	안 얼거값은 모·	는 니시털 입력에 내해	동일압니다.	비 피 이 치 거	이 거취취			
	보터가 와/	새 모느에서 상· 패하니다	시 성망양 또는 상시 역	망양으로 작동아는 니	ㅔ 필요안 경	우, 성왁안	니시털		
	입덕을 신역	픽압니다. 1 _ 사니 저바		Doct0.2 - 사내 에비	L-S-L				
A 35 7	1507	·- · · · · · · · · · · · · · · · · · ·		이 이 격망	5	0	3		
A.55./	1)까/	의제 모드 장이	- 하서치 (1)	비월경와(U) 하서친 (2)	-)		
A 2E 9	비월경와(1670	이 이 미 드 키	이다 19.9.치 (T)	월 '장와 (Z)		기김 모드 (3)		
A.55.0	10/9	- 에너 취재 모	ː니 ㄷ기 하서칭디 친스르 '		1 근 기 세 치	~ 여소니린	스레이		
	찰싱와 보니	=예지 와새 보. 	느가 활성와된 욋수들 [-r다띱니나. 이 카운티	1글 디셋알	구 ᆹ급니니	. 스게일		
	│ 값은 ⊥입니	 †.							

83. 표: 화재 모드 하위 메뉴 항목

A36 -PID 하위 메뉴

IX	ID	이름		기본깂	t	단위	최소	최대
A.36.1	118	PID 이득		100.00)	%	0.00	1000.00
	파라미터	값을 100%로 설정	성한 경우, 오차값	10% 변	동은 컨트롤리	서 출력 10%	변동을 발생 시	킵니다.
A.36.2	119	PID 적분 시간		1.00		초	0.00	600.00
	파라미터	값을 1.00s로 설정	!한 경우, 오차값	10% 변	동은 컨트롤리	러 출력 10.0	0%/s 변동을 빌	날생
	시킵니다.			-		-	•	
A.36.3	132	PID 미분 시간		0.00		초	0.00	100.00
	파라미터	값을 1.00s로 설정	한 경우, 1.00s 등	동안 오치	h값 10% 변동	은 컨트롤리	너 출력 10.00%	변동을
	발생 시킵	니다.						
A.36.4	1036	프로세스 단위	선택	1		-	1	46
	실제값에	대한 단위를 선택	하세요.					
		7						
	%	(1) <u>–</u>	— (2) n	rpm	(3)	ppm (4) pp	<i>is</i> (5)
	/	(6) /	(7)	/	(8)	kg (a) kg	7 (10)
	5	(0)	n (/)	h	(0)	5	s) mi	in (10)
	kg	(11)	³ - (12)	$\frac{m^3}{\cdot}$	(13)	$\frac{m^3}{4}$ (1	.4)	(15)
	h	5		min		h	5	
	mbar	(16) ba	r (17)	Pa	(18)	<i>kPa</i> (1	.9) <i>m</i> V	/5 (20)
	kW	(21) °	(22)	gal s	(23)	gal min (2	$\frac{ga}{h}$	/ (25)
	lb	(26) //	(27)	lЬ	(20)	ft ³	ft ft	(20)
	5	(20) <u>mi</u>	n (27)	h	(20)	5 (2	.9) mi	n (30)
	<u>ft</u> ³	(31)	- (32)	in wg	(33)	ftwg (3	34) <i>SP</i>	27 (35)
	h lh	5					-	
	$\frac{10}{in^2}$	(36) <i>psig</i>	7 (37)	hp	(38)	°F (3	9) ft	(40)
	inch	(41) mn	(42)	ст	(43)	<i>m</i> (4	14) <i>gpn</i>	n (45)
	cfm	(46)						
A.36.5	1033	최소 프로세스	<u> </u> 관위	0		가변	가변	가변
A.36.6	1034	최대 프로세스	<u> </u>	100		가변	가변	가변
	0% 피드빅	백 또는 설정값에서	ㅣ프로세스 단위.	로 나타니	내는 값. 해당	크기 조정은	모니터링 용도	드로만
	수행됩니	다. PID 컨트롤러는	- 피드백과 설정	값에 내브	부적으로 계속	해서 백분물	울을 사용합니디	.
A.36.7	1035	프로세스 단위 :	소수점	2		-	0	4
	프로세스	단위값의 소수점	개수.					
A.36.8	340	오류 변환		정상 (0)	-	0	1
	0 = 정상	(피드백 < 설정값	-> PID 출력 증	가)				
	1 = 변환	(피드백 < 설정값	-> PID 출력 감:	소)				
A.36.9	1056	불감대		0		가변	가변	가변
	프로세스	내 설정값 주변 불	남대 영역. PID	출력은 I	피드백이 설정	이시간 동안	불감대 영역에	놓이는
	경우에 잠	금 상태가 됩니다						

A.36.10	1057	불감대 지연		0.00	초	0.00	320.00
	피드백이	설정 시간의 불감대 영역	취에 있는 경	경우 출력이 잠금 설경	형됩니다.		
A.36.11	167	키패드 설정값 1		0.00	가변	가변	가변
A.36.12	168	키패드 설정값 2		0.00	가변	가변	가변
A.36.13	1068	설정값 램프 시간		0.00	초	0.00	300.00
	설정값 변	화에 대해 증가 및 감소형	하는 램프	시간을 제공합니다.	즉, 최소에서	최대로 변화혀	나는 시간.
A.36.14	1046	PID 1 설정값 부스트		DIN_Port01 (9)	-	0	10
				= 거짓			
	참 = PID	설정값 부스트 활성화.					
	선택 가능	한 열거값은 모든 디지털	법입력에 대	내해 동일합니다.			
A.36.15	1047	PID 1 선택 설정값		DIN_Port01 (9)	-	0	10
				= 거짓			
	거짓 = PI	D 설정값 1이 PID 컨트홀	를러에 대한	▶ 설정값 역할을 합니	다.		
	참 = PID	설정값 2가 PID 컨트롤리	서에 대한 심	설정값 역할을 합니C	ŀ.		
	선택 가능	한 열거값은 모든 디지털	법입력에 대	내해 동일합니다.			
A.36.16	332	설정값 1 소스 선택		AIC (3)	-	0	32
	AI 및 프로	네스 데이터 입력은 백분	분율(0.00~	100.00%)로 프로세스	느되고 설정	값 최소, 최대에	따라
	조정됩니다	다. 주의! 프로세스 데이티	네 입력 신	호는 소수점 2자리를	사용합니디	. 온도 입력을	설정하는
	경우, 설정	값 최소 및 최대 범위 피	·라미터를	-50 ~ 200°C로 설정	해야 합니디	ł.	
	미사용 (0))	키패드 실	널정값 1 (1)	키패	드 설정값 2 (2)	
	AIC (3)		AIV (4)		AI 3	(5)	
	AI 4 (6)		AI 5 (7)		AI 6	(8)	
	프로세스	데이터 입력 1 (9)	프로세스	: 데이터 입력 2 (10)	프로	세스 데이터 입	력 3 (11)
	프로세스	데이터 입력 4 (12)	프로세스	: 데이터 입력 5 (13)	프로	세스 데이터 입	력 6 (14)
	프로세스	데이터 입력 7 (15)	프로세스	: 데이터 입력 8 (16)			
	온도 입력	1 (17) 온도 입	력 2 (18)	온도 입력 3	3 (19)		
	온도 입력	4 (20) 온도 입	력 5 (21)	온도 입력 (5 (22)		
	차단 1 (23	3)	차단 2 (2	24)	차단	3 (25)	
	차단 4 (26	ō)	차단 5 (2	27)	차단	6 (28)	
	자단 7 (29))	자단 8 (3	30)	자단	9 (31)	
	자난 10 (:	32)		0.00	04	200.00	200.00
A.36.17	1069	죄소 설성값 1 니 : 이 : 이 : 이		0.00	%	-200.00	200.00
	죄소 아날	로그 신오의 죄소값.		100.00	04	200.00	200.00
A.36.18		최내 철정값 I		100.00	%	-200.00	200.00
	죄내 아날	로그 신오의 죄내값.					22
A.36.19	431	실성값 2 소스 선택		키패드 설성값	-	0	32
				2(3)		71 +1	
	AI 및 프로	·세스 네이터 입력은 백년	· 이 기 이 가 이 이 ~	100.00%)로 프로세스	`뇌고 설정` □ ○ ★! · !=	값 죄소, 죄대에	바라
	소성됩니[·/· 수의! 프로세스 네이티	비입력신:	오는 소수섬 2사리를	사용압니다	· 폰노 입력을 ·	실성하는
	경우, 실성	GL 죄소 및 죄내 몀위 피	r라미터를 	-50 ~ 200℃도 설성	애야 압니니	ᅣ	
	비사용 (0))	기패드 실	일영값 I (I)	키배	느 실성값 2 (2) (F)	
	AIC (3)		AIV (4)		AI 3	(5)	
	AI 4 (6)		AI 5 (7)		AI 6	(ð)	

	프로세스	데이터 입력 1 (9)	프로세스	: 데이터 입력 2 (10)	프로서	네스 데이터 입	력 3 (11)
	프로세스	데이터 입력 4 (12)	프로세스	. 데이터 입력 5 (13)	프로서	네스 데이터 입	력 6 (14)
	프로세스	데이터 입력 7 (15)	프로세스	. 데이터 입력 8 (16)			
	온도 입력	1(17) 온도	입력 2 (18)	온도 입력 3	(19)		
	온도 입력	4 (20) 온도	입력 5 (21)	온도 입력 6	(22)		
	차단 1 (23	3)	차단 2 (2	24)	차단	3 (25)	
	차단 4 (26	5)	차단 5 (2	27)	차단 (5 (28)	
	차단 7 (29))	차단 8 (중	30)	차단	9 (31)	
	차단 10 (3	32)					
A.36.20	1073	최소 설정값 2		0.00	%	-200.00	200.00
	최소 아날						
A.36.21	1074	최대 설정값 2		100.00	%	-200.00	200.00
	최대 아날	 로그 신호의 최대값.					
A.36.22	333	피드백 기능		소스 1만 사용	-	1	9
				(1)			
	Sour	rce 1 만 사용	(1)	$\sqrt{Source 1}$		(2)	
							
	<i></i> √ <i>Sourc</i>	e 1 – Source 2	(3)	$\sqrt{\text{Source 1}} + \sqrt{\text{Source 1}}$	ource 2	(4)	
	Source	e 1 + Source 2	(5)	Source 1 - Sour	rce 2	(6)	
	최소(Sol	urce 1 또는Source 2)	(7)	최대(Source 1 5	E는 Source 2	' <i>)</i> (8)	
	27.6		(0)				
Δ 36 23	<u> 영균(300</u> 1058	<i>urce 1 과 Source 2)</i> 피드배 기느 이드	(9)	100.00	%	-1000 0	1000.0
A.30.23	피드배 기	<u> 피_ ㅋ 깅 이ㅋ</u> 느 가 2 드라 하께 사외	▲도!! ! ㄷ ⊦	100.00	70	1000.0	1000.0
Δ 36 24	33/		, ᆸᅴᅴ.	$\Delta IV(2)$	-	0	30
A.30.24	시 미 프 근	<u> 씌ㅡㄱ - ㅗㅡ ᆫㄱ</u> - 세스 데이터 이려으 비	ᅢᄇᄋ᠐᠐。	100,00%)로 표근세스	 . 디	~ - 치즈 치대에	 [[]]]
	지 및 프로 조정되니[:세드 데이터 답극은 두 다 주어! 표리세스 데이	1군월(0.00년	100.00%)로 프로세그 히느 시스저 2자리르	·뇌꼬 ㄹㅇᄈ 사요하니다	· ᅬㅗ, ᅬ네에 오ㄷ 이려으 ·	- 띠디 서저친느
	고 이 네 데 너 더 더 더 더 더 더 더 더 더 더 더 더 더 더 더 더 더 더	-)· ㅜᅴ: 프로세드 네이 가 치스 미 치대 버의	파라미터를	모든 포구금 2시니콜 -50 ~ 200°Cㄹ 서저;	케이 아이다	· 근ㅗ ㅂㅓㄹ	ㄹㅇ의는
	연구, 20 미사요 (0)	· 따 피고 곳 피네 금지 \	키패드 시	너저가 1 (1)	기아 입니니 키피미	・ こ 서저가	
		/	<u> </u>		/ I II		
	$\Delta IC(3)$		$\Delta I V (A)$	ヨロ(T)		- 20 th 2 (2)	
	AIC (3)		AIV (4)	ΞΩҞ т (т)	AI 3 (5)	
	AIC (3) AI 4 (6) 프르세스	데이터 이려 1 (0)	AIV (4) AI 5 (7) 프르세스	- 데이터 인력 2 (10)	АІЗ(АІЗ(АІб(шек	- 같이없고(2) 5) 8) 비스 데이터 인	려 3 (11)
	AIC (3) AI 4 (6) 프로세스	데이터 입력 1 (9) 데이터 입력 4 (12)	AIV (4) AI 5 (7) 프로세스	: 데이터 입력 2 (10)	기패= AI3(AI6(프로사	5) 8) 네스 데이터 입	력 3 (11) 력 6 (14)
	AIC (3) AI 4 (6) 프로세스 프로세스	데이터 입력 1 (9) 데이터 입력 4 (12) 데이터 입력 7 (15)	AIV (4) AI 5 (7) 프로세스 프로세스	: 데이터 입력 2 (10) : 데이터 입력 5 (13)	기패크 AI 3 (AI 6 (프로서 프로서	5) 8) 네스 데이터 입 네스 데이터 입	력 3 (11) 력 6 (14)
	AIC (3) AI 4 (6) 프로세스 프로세스 프로세스	데이터 입력 1 (9) 데이터 입력 4 (12) 데이터 입력 7 (15) 1 (17) 오드 5	AIV (4) AI 5 (7) 프로세스 프로세스 프로세스	: 데이터 입력 2 (10) : 데이터 입력 5 (13) : 데이터 입력 8 (16) 오드 이려 3	기페= AI 3 (AI 6 (프로서 프로서	5) 8) 네스 데이터 입 네스 데이터 입	력 3 (11) 력 6 (14)
	AIC (3) AI 4 (6) 프로세스 프로세스 프로세스 온도 입력	데이터 입력 1 (9) 데이터 입력 4 (12) 데이터 입력 7 (15) 1 (17) 온도 1	AIV (4) AI 5 (7) 프로세스 프로세스 집력 2 (18) 입력 5 (21)	: 데이터 입력 2 (10) : 데이터 입력 5 (13) : 데이터 입력 8 (16) 온도 입력 3 오드 이려 6	기페= AI 3 (AI 6 (프로서 (19)	5) 8) 네스 데이터 입 네스 데이터 입	력 3 (11) 력 6 (14)
	AIC (3) AI 4 (6) 프로세스 프로세스 온도 입력 온도 입력	데이터 입력 1 (9) 데이터 입력 4 (12) 데이터 입력 7 (15) 1 (17) 온도 4 4 (20) 온도 5	AIV (4) AI 5 (7) 프로세스 프로세스 입력 2 (18) 입력 5 (21)	: 데이터 입력 2 (10) : 데이터 입력 5 (13) : 데이터 입력 8 (16) 온도 입력 3 온도 입력 6	기페를 AI 3 (AI 6 (프로사 (19) (22)	5) 8) 네스 데이터 입 네스 데이터 입	력 3 (11) 력 6 (14)
	AIC (3) AI 4 (6) 프로세스 프로세스 온도 입력 온도 입력 차단 1 (23	데이터 입력 1 (9) 데이터 입력 4 (12) 데이터 입력 7 (15) 1 (17) 온도 5 4 (20) 온도 5 3) 차단 2	AIV (4) AI 5 (7) 프로세스 프로세스 입력 2 (18) 입력 5 (21) 2 (24) 5 (28)	: 데이터 입력 2 (10) : 데이터 입력 5 (13) : 데이터 입력 8 (16) 온도 입력 3 온도 입력 6 차단 3 (25)) 「加当 AI 3 (AI 6 (프로A 프로A (19) (22)	5) 8) 네스 데이터 입 네스 데이터 입 차단 4 (26)	력 3 (11) 력 6 (14)
	AIC (3) AI 4 (6) 프로세스 프로세스 온도 입력 자단 1 (23 차단 5 (27 차다 9 (31	데이터 입력 1 (9) 데이터 입력 4 (12) 데이터 입력 7 (15) 1 (17) 온도 5 4 (20) 온도 5 3) 차단 2	AIV (4) AI 5 (7) 프로세스 프로세스 입력 2 (18) 입력 5 (21) 2 (24) 5 (28)	: 데이터 입력 2 (10) : 데이터 입력 5 (13) : 데이터 입력 8 (16) 온도 입력 3 온도 입력 6 차단 3 (25) 차단 7 (29)	기페 AI 3 (AI 6 (프로서 (19) (22)	5) 8) 네스 데이터 입 네스 데이터 입 차단 4 (26) 차단 8 (30)	력 3 (11) 력 6 (14)
A 36 25	AIC (3) AI 4 (6) 프로세스 프로세스 온도 입력 온도 입력 차단 1 (23 차단 5 (27 차단 9 (31	데이터 입력 1 (9) 데이터 입력 4 (12) 데이터 입력 7 (15) 1 (17) 온도 5 4 (20) 온도 5 3) 차단 2 7) 차단 5	AIV (4) AI 5 (7) 프로세스 프로세스 입력 2 (18) 입력 5 (21) 2 (24) 5 (28) 10 (32)	: 데이터 입력 2 (10) : 데이터 입력 5 (13) : 데이터 입력 8 (16) 온도 입력 3 온도 입력 6 차단 3 (25) 차단 7 (29)	기페 AI 3 (AI 6 (프로서 (19) (22)	5) 8) 네스 데이터 입 네스 데이터 입 차단 4 (26) 차단 8 (30)	력 3 (11) 력 6 (14) 200.00
A.36.25	AIC (3) AI 4 (6) 프로세스 프로세스 온도 입력 온도 입력 차단 1 (23 차단 5 (27 차단 9 (31 336	데이터 입력 1 (9) 데이터 입력 4 (12) 데이터 입력 7 (15) 1 (17) 온도 5 4 (20) 온도 5 3) 차단 2 7) 차단 2 1) 차단 3 1) 차단 3	AIV (4) AI 5 (7) 프로세스 프로세스 입력 2 (18) 입력 5 (21) 2 (24) 5 (28) 10 (32)	: 데이터 입력 2 (10) : 데이터 입력 5 (13) : 데이터 입력 8 (16) 온도 입력 3 온도 입력 6 차단 3 (25) 차단 7 (29)	> 「叫」 AI 3 (AI 6 (프로A 프로A (19) (22)	5) 8) 네스 데이터 입 네스 데이터 입 차단 4 (26) 차단 8 (30) -200.00	력 3 (11) 력 6 (14) 200.00
A.36.25	AIC (3) AI 4 (6) 프로세스 프로세스 온도 입력 차단 1 (23 차단 5 (27 차단 9 (31 336 최소 아날	데이터 입력 1 (9) 데이터 입력 4 (12) 데이터 입력 7 (15) 1 (17) 온도 5 4 (20) 온도 5 3) 차단 2 7) 차단 2 1) 차단 3 3 차단 3 3 차단 3 3 차단 3 3 차단 3 3 차단 3	AIV (4) AI 5 (7) 프로세스 프로세스 입력 2 (18) 입력 5 (21) 2 (24) 5 (28) 10 (32)	: 데이터 입력 2 (10) : 데이터 입력 5 (13) : 데이터 입력 8 (16) 온도 입력 3 온도 입력 6 차단 3 (25) 차단 7 (29) 100.00	> 「車 AI 3 (AI 6 (프로A (19) (22) %	- 일 0 없 2 (2) 5) 8) 네스 데이터 입 네스 데이터 입 차단 4 (26) 차단 8 (30) -200.00	력 3 (11) 력 6 (14) 200.00
A.36.25 A.36.26	AIC (3) AI 4 (6) 프로세스 프로세스 온도 입력 온도 입력 차단 1 (23 차단 5 (27 차단 9 (31 336 최소 아날. 337	데이터 입력 1 (9) 데이터 입력 4 (1∠) 데이터 입력 7 (15) 1 (17) 온도 1 4 (20) 온도 1 3) 차단 2 3) 차단 2 1) 차단 3 1 (17) 차단 3 3 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	AIV (4) AI 5 (7) 프로세스 프로세스 입력 2 (18) 입력 5 (21) 2 (24) 5 (28) 10 (32)	: 데이터 입력 2 (10) : 데이터 입력 5 (13) : 데이터 입력 8 (16) 온도 입력 3 온도 입력 6 차단 3 (25) 차단 7 (29) 100.00	> 「皿」 AI 3 (AI 6 (프로A (19) (22) %	- 일 0 값 2 (2) 5) 8) 네스 데이터 입 네스 데이터 입 차단 4 (26) 차단 8 (30) -200.00	력 3 (11) 력 6 (14) 200.00 200.00
A.36.25 A.36.26 A.36.27	AIC (3) AI 4 (6) 프로세스 프로세스 온도 입력 차단 1 (23 차단 5 (27 차단 9 (31 336 최소 아날 337 최대 아날	데이터 입력 1 (9) 데이터 입력 4 (12) 데이터 입력 7 (15) 1 (17) 온도 5 4 (20) 온도 5 3) 차단 2 7) 차단 2 1) 차단 2 1) 차단 2 1] 조고 진호의 최소값. 조대 피드백 1 로그 진호의 최대값. 피드백 2 소스 서택	AIV (4) AI 5 (7) 프로세스 프로세스 입력 2 (18) 입력 5 (21) 2 (24) 5 (28) 10 (32)	: 데이터 입력 2 (10) : 데이터 입력 5 (13) : 데이터 입력 8 (16) 온도 입력 3 온도 입력 6 차단 3 (25) 차단 7 (29) 0.00	> 「車 AI 3 (AI 6 (亜 로 A 亜 로 A (19) (22) %	- 일 0 값 2 (2) 5) 8) 네스 데이터 입 네스 데이터 입 차단 4 (26) 차단 8 (30) -200.00	력 3 (11) 력 6 (14) 200.00 200.00
A.36.25 A.36.26 A.36.27	AIC (3) AI 4 (6) 프로세스 프로세스 온도 입력 온도 입력 차단 1 (23 차단 5 (27 차단 9 (31 336 최소 아날 337 최대 아날 335	데이터 입력 1 (9) 데이터 입력 4 (12) 데이터 입력 7 (15) 1 (17) 온도 1 4 (20) 온도 1 3) 차단 2 3) 차단 2 1) 차단 2 1 (17) 차단 2 3) 차단 2 3) 차단 2 1) 차단 2 1] 11 1 로그 신호의 최→값. 최대 피드백 1 로그 신호의 최→값. 피드백 2 소스 선택	AIV (4) AI 5 (7) 프로세스 프로세스 입력 2 (18) 입력 5 (21) 2 (24) 5 (28) 10 (32)	: 데이터 입력 2 (10) : 데이터 입력 5 (13) : 데이터 입력 8 (16) 온도 입력 3 온도 입력 6 차단 3 (25) 차단 7 (29) 0.00 미사용 (0)	・「叫」 AI 3(AI 6(프로A (19) (22) % ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	- 일 이 없 고 (2) 5) 8) 네스 데이터 입 네스 데이터 입 차단 4 (26) 차단 8 (30) -200.00 -200.00	력 3 (11) 력 6 (14) 200.00 200.00 30
A.36.25 A.36.26 A.36.27	AIC (3) AI 4 (6) 프로세스 프로세스 온도 입력 차단 1 (23 차단 5 (27 차단 9 (31 336 최소 아날 337 최대 아날 335 AI 및 프로	데이터 입력 1 (9) 데이터 입력 4 (12) 데이터 입력 7 (15) 1 (17) 온도 1 4 (20) 온도 1 3) 차단 2 7) 차단 2 1) 차단 2 3) 차단 2 7) 차단 2 1) 차단 2 3 3 차단 2 3 1] 1 3 1 (17) 오도 1 2 3 1 (17) 오도 1 3 1 (17) 오도 1 1 (17) 오도 1 (17)	AIV (4) AI 5 (7) 프로세스 프로세스 입력 2 (18) 입력 5 (21) 2 (24) 5 (28) 10 (32)	: 데이터 입력 2 (10) : 데이터 입력 5 (13) : 데이터 입력 8 (16) 온도 입력 3 온도 입력 6 차단 3 (25) 차단 7 (29) 0.00 100.00 : 미사용 (0) 100.00%)로 프로세스	(19) (22) % ・ ・ ジョン 설정 (19) (22)	5) 8) 테스 데이터 입 테스 데이터 입 체스 데이터 입 차단 4 (26) 차단 8 (30) -200.00 -200.00	력 3 (11) 력 6 (14) 200.00 200.00 30 따라

	경우, 설정값 최소	및 최대 범위 파라미터를	-50 ~ 200°C로 설정	해야 합니다	•	
	미사용 (0)	키패드	널정값 1 (1)	키패드	드 설정값 2 (2)
	AIC (3)	AIV (4)		AI 3 (5)	
	AI 4 (6)	AI 5 (7)		AI 6 (8)	
	 프로세스 데이터 1	입력 1 (9) 프로세스	· 데이터 입력 2 (10)	프로시	네스 데이터 입	력 3 (11)
	프로세스 데이터 1	입력 4 (12) 프로세스	_ 데이터 입력 5 (13)	프로시		력 6 (14)
	프로세스 데이터 9	입력 7 (15) 프로세스	- 데이터 입력 8 (16)			1 - ()
	" "	오도 입력 2 (18)	온도 입력 3	(19)		
	오도 입력 4 (20)	오도 입력 5 (21)	오도 인력 6	(22)		
	차다 1 (23)	차다 2 (24)	는 또 립 득 ♥ 차 다 3 (25)	(22)	차다 4 (26)
	차다 5 (27)	차단 6 (28)	차단 7 (29)		차다 & (30)
	차단 9 (31)	차다 10 (32))
Δ 36 28	지진 (J1) 338 치스 II	지만 10 (52)	0.00	%	-200.00	200.00
A.50.20	치소 아날리기 시장	<u></u>	0.00	70	200.00	200.00
Δ 36 29	339 치대 1	ᆂᅴ ᅬᆂᆹ· 히ᄃ배 2	100.00	%	-200.00	200.00
A.30.23	시대 아날리기 시정	<u>ㅋㅡㅋ 수</u> ㅎ이 치대간	100.00	70	200.00	200.00
A 36 30		포ᅴ ᅬᆌᆹ. ᅚ의ᄃ 기느	ㅅㅅ 1마 사요	-	1	Q
A.30.30		└┮─ 10			1	5
	Source 1 Pt	사용 (1)	Source 1		(2)	
	Source I E	~~~~ (±)	V Source 1		(2)	
	Source 1 – So	<i>ource 2</i> (3)	$\sqrt{\text{Source 1}} + \sqrt{\text{Source 1}}$	ource 2	(4)	
	Source 1 + S	<i>Source 2</i> (5)	Source 1 - Sour	rce 2	(6)	
	최소(Source 1 년	또 <i>는 Source 2)</i> (7)	최대(Source 1 5	폰는 Source 2	?) (8)	
	평국(Source 1	The Source 21 (9)				
A.36.31	<i>평균(Source 1</i> 1060 피드 표	<i>과 Source 2)</i> (9) 프워드 기능 게인	100.00	%	-1000.0	1000.0
A.36.31	<i>평균(Source 1</i> 1060 피드 포 모드 피드 포워드	<i>과 Source 2)</i> (9) 표워드 기능 게인 기능이 공통 게인	100.00	%	-1000.0	1000.0
A.36.31	<i>평균(Source 1</i> 1060 피드 표 모든 피드 포워드	<i>과 Source 2)</i> (9) 포워드 기능 게인 기능의 공통 게인	100.00	%	-1000.0	1000.0
A.36.31 A.36.32	<i>평균(Source 1</i> 1060 피드 포 모든 피드 포워드 1061 피드 포	과 Source 2) (9) 표워드 기능 게인 기능의 공통 게인 표워드 1 소스 선택 이터 입력은 백부율(000~	100.00 미사용 (0)	% - 	-1000.0 0 : 친소 최대0	1000.0 30
A.36.31 A.36.32	<i>평균(Source 1</i> 1060 피드 포 모든 피드 포워드 1061 피드 포 AI 및 프로 세스 데 조정됩니다 주이!	과 Source 2) (9) 포워드 기능 게인 기능의 공통 게인 포워드 1 소스 선택 이터 입력은 백분율(0.00~ 프로세스 데이터 입력 시	100.00 미사용 (0) 100.00%)로 프로세스 호는 소수적 2자리를	% - -되고 설정값 사용합니다	-1000.0 0 X 최소, 최대어 오도 인력을	1000.0 30 따라
A.36.31 A.36.32	<i>평균(Source 1</i> 1060 피드 포 모든 피드 포워드 1061 피드 포 AI 및 프로세스 데 조정됩니다. 주의! 경우 섬작값 취소	<u>과 Source 2) (9)</u> 표워드 기능 게인 기능의 공통 게인 표워드 1 소스 선택 이터 입력은 백분율(0.00~ 프로세스 데이터 입력 신 및 최대 범위 파라미터를	100.00 미사용 (0) 100.00%)로 프로세스 호는 소수점 2자리를 -50 ~ 200℃로 석적	% - - 되고 설정갑 사용합니다	-1000.0 0 값 최소, 최대어 . 온도 입력을	1000.0 30 I 따라 설정하는
A.36.31 A.36.32	평균(Source 1 1060 피드 포 모든 피드 포워드 1061 피드 포 AI 및 프로세스 데 조정됩니다. 주의! 경우, 설정값 최소	과 Source 2) (9) 본워드 기능 게인 기능의 공통 게인 본워드 1 소스 선택 이터 입력은 백분율(0.00~ 프로세스 데이터 입력 신 및 최대 범위 파라미터를 키패드	100.00 미사용 (0) 100.00%)로 프로세스 호는 소수점 2자리를 -50 ~ 200℃로 설정3	% - 	-1000.0 0 X 최소, 최대여 . 온도 입력을 - 석정값 2 (2	1000.0 30 I 따라 설정하는
A.36.31 A.36.32	<i>평균(Source 1</i> 1060 피드 포 모든 피드 포워드 1061 피드 포 AI 및 프로세스 데 조정됩니다. 주의! 경우, 설정값 최소 미사용(0)	과 Source 2) (9) 본워드 기능 게인 기능의 공통 게인 본워드 1 소스 선택 이터 입력은 백분율(0.00~ 프로세스 데이터 입력 신 및 최대 범위 파라미터를 키패드 4 AIV (4)	100.00 미사용 (0) 100.00%)로 프로세스 호는 소수점 2자리를 -50 ~ 200℃로 설정3 설정값 1 (1)	% - 도되고 설정값 사용합니다 해야 합니다 키패 5 AI 3 (-1000.0 0 X 최소, 최대어 . 온도 입력을 드 설정값 2 (2	1000.0 30 I 따라 설정하는
A.36.31 A.36.32	<i>평균(Source 1</i> 1060 피드 포 모든 피드 포워드 1061 피드 포 AI 및 프로세스 데 조정됩니다. 주의! 경우, 설정값 최소 미사용(0) AIC (3)	과 Source 2) (9) 본워드 기능 게인 기능의 공통 게인 본워드 1 소스 선택 이터 입력은 백분율(0.00~ 프로세스 데이터 입력 신 및 최대 범위 파라미터를 키패드 4 시V (4) 시1 5 (7)	100.00 미사용 (0) 100.00%)로 프로세스 호는 소수점 2자리를 -50 ~ 200℃로 설정 설정값 1 (1)	% - 도되고 설정값 사용합니다 해야 합니다 키패 5 AI 3 (-1000.0) (최소, 최대여 (온도 입력을 (도 설정값 2 (2 5) 8)	1000.0 30 I 따라 설정하는)
A.36.31 A.36.32	<i>평균(Source 1</i> 1060 피드 포 모든 피드 포워드 1061 피드 포 AI 및 프로 세스 데 조정됩니다. 주의! 경우, 설정값 최소 미사용 (0) AIC (3) AI 4 (6) 프로 세스 데이터 9	과 Source 2) (9) 본워드 기능 게인 기능의 공통 게인 기능의 공통 게인 포워드 1 소스 선택 이터 입력은 백분율(0.00~ 프로세스 데이터 입력 신 및 최대 범위 파라미터를 기패드 4 지V (4) 시감 5 (7) 프로세스	100.00 미사용 (0) 100.00%)로 프로세스 호는 소수점 2자리를 -50 ~ 200°C로 설정 설정값 1 (1)	% - :되고 설정값 사용합니다 해야 합니다 키패드 AI 3 (프로시	-1000.0 0 X 최소, 최대어 . 온도 입력을 E 설정값 2 (2 5) 8)	1000.0 30 I 따라 설정하는)
A.36.31 A.36.32	<i>평균(Source 1</i> 1060 피드 포 모든 피드 포워드 1061 피드 포 AI 및 프로세스 데 조정됩니다. 주의! 경우, 설정값 최소 미사용 (0) AIC (3) AI 4 (6) 프로세스 데이터 입	과 Source 2) (9) 포워드 기능 게인 기능의 공통 게인 기능의 공통 게인 표 (0.00~ 포루세스 데이터 입력 신 및 최대 범위 파라미터를 기패드 여 지지 (4) 지I 5 (7) 프로세스 입력 1 (9) 프로세스	100.00 미사용 (0) 100.00%)로 프로세스 호는 소수점 2자리를 -50 ~ 200℃로 설정 설정값 1 (1) = 데이터 입력 2 (10) = 데이터 입력 5 (13)	% - 도되고 설정값 사용합니다 해야 합니다 키패드 AI 3 (AI 6 (프로시	-1000.0	1000.0 30 I 따라 설정하는) 력 3 (11) 력 6 (14)
A.36.31 A.36.32	평균(Source 1 1060 피드 포 모든 피드 포워드 1061 피드 포 AI 및 프로 세스 데 조정됩니다. 주의! 경우, 설정값 최소 미사용(0) AIC (3) AI 4 (6) 프로세스 데이터 (프로세스 데이터 (과 Source 2) (9) 전위드 기능 게인 기능의 공통 게인 전위드 1 소스 선택 이터 입력은 백분율(0.00~ 프로세스 데이터 입력 신 및 최대 범위 파라미터를 키패드 4 AIV (4) AI 5 (7) 입력 1 (9) 프로세스 입력 4 (12) 프로세스	100.00 미사용 (0) 100.00%)로 프로세스 호는 소수점 2자리를 -50 ~ 200°C로 설정 설정값 1 (1) 더이터 입력 2 (10) 더이터 입력 5 (13)	% :되고 설정값 사용합니다 해야 합니다 키패드 AI 3 (프로씨	-1000.0 0 차 최소, 최대어 . 온도 입력을 = 설정값 2 (2 5) 8) 네스 데이터 입 네스 데이터 입	1000.0 30 I 따라 설정하는) 력 3 (11) 력 6 (14)
A.36.31 A.36.32	평균(Source 1 1060 피드 포 모든 피드 포워드 1061 피드 포 AI 및 프로세스 데 조정됩니다. 주의! 경우, 설정값 최소 미사용(0) AIC(3) AI 4(6) 프로세스 데이터 입 프로세스 데이터 입	과 Source 2) (9) 프워드 기능 게인 기능의 공통 게인 기능의 공통 게인 표정도 1 소스 선택 이터 입력은 백분율(0.00~ 프로세스 데이터 입력 신 및 최대 범위 파라미터를 키패드 4 시간 (4) 시IV (4) 입력 1 (9) 프로세스 입력 4 (12) 프로세스 입력 7 (15) 프로세스	100.00 미사용 (0) 100.00%)로 프로세스 호는 소수점 2자리를 -50 ~ 200°C로 설정값 설정값 1 (1) = 데이터 입력 2 (10) = 데이터 입력 5 (13) = 데이터 입력 8 (16) 오드 이려 3	% - 도되고 설정값 사용합니다 해야 합니다 키패드 AI 3 (AI 6 (프로시 (19)	-1000.0	1000.0 30 I 따라 설정하는) 력 3 (11) 력 6 (14)
A.36.31 A.36.32	평균(Source 1 1060 피드 포 모든 피드 포워드 1061 피드 포 시 및 프로 세스 데 조정됩니다. 주의! 경우, 설정 값 최소 미사용(0) 시IC(3) 시I 4(6) 프로세스 데이터 6 프로세스 데이터 6 프로세스 데이터 6 프로세스 데이터 6 프로세스 데이터 6	과 Source 2) (9) 본워드 기능 게인 기ం의 공통 게인 기능의 공통 게인 표정 (0.00~) 포로세스 데이터 입력 신 및 최대 범위 파라미터를 기대도 2 기대도 2 신덕 1 (9) 프로세스 입력 1 (9) 프로세스 입력 7 (15) 프로세스 온도 입력 2 (18) 이너 김 (12)	100.00 미사용 (0) 100.00%)로 프로세스 호는 소수점 2자리를 -50 ~ 200°C로 설정3 설정값 1 (1) 의미이터 입력 2 (10) 이이터 입력 5 (13) 데이터 입력 8 (16) 온도 입력 3 유도 입력 3	% - 도되고 설정값 사용합니다 해야 합니다 키패드 AI 3 (AI 6 (프로서 (19) (22)	-1000.0 0 X 최소, 최대어 . 온도 입력을 = 설정값 2 (2 5) 8) 네스 데이터 입 네스 데이터 입	1000.0 30 I 따라 설정하는) 역 3 (11) 력 6 (14)
A.36.31 A.36.32	평균(Source 1 1060 피드 포 모든 피드 포워드 1061 피드 포 AI 및 프로세스 데 조정됩니다. 주의! 경우, 설정값 최소 미사용 (0) AIC (3) AI 4 (6) 프로세스 데이터 위 프로세스 데이터 위 프로세스 데이터 위 온도 입력 1 (17) 온도 입력 4 (20)	과 Source 2) (9) 프워드 기능 게인 기승의 공통 게인 기능의 공통 게인 표정 (0.00~ 프로세스 데이터 입력 신 및 최대 범위 파라미터를 및 최대 범위 파라미터를 키패드 4 시V (4) AIV (4) 입력 1 (9) 프로세스 입력 4 (12) 프로세스 입력 7 (15) 프로세스 온도 입력 5 (21) 치다 2 (24)	100.00 미사용 (0) 100.00%)로 프로세스 호는 소수점 2자리를 -50 ~ 200℃로 설정 설정값 1 (1) = 데이터 입력 5 (13) = 데이터 입력 8 (16) 온도 입력 3 온도 입력 6 치다 2 (25)	% - 도되고 설정값 사용합니다 해야 합니다 키패드 AI 3 (AI 6 (프로시 (19) (22)	-1000.0	1000.0 30 I 따라 설정하는) 력 3 (11) 력 6 (14)
A.36.31 A.36.32	<i>평균(Source 1</i> 1060 피드 포 모든 피드 포워드 1061 피드 포 지 및 프로 세스 데 조정됩니다. 주의! 경우, 설정 값 최소 미사용 (0) AIC (3) AI 4 (6) 프로세스 데이터 6 프로세스 데이터 6 프로세스 데이터 6 프로세스 데이터 6 프로세스 데이터 6 프로세스 데이터 6 프로세스 101 6	과 Source 2) (9) 적용 기능 개인 기능의 공통 개인 기능의 공통 개인 표정 1 소스 선택 전취드 1 소스 선택 이어 입력은 백분율(0.00~ 프로세스 데이터 입력 신 및 최대 범위 파라미터를 기파트 가 기파드 가 입력 1 (9) 프로세스 입력 7 (15) 프로세스 온도 입력 2 (18) 온도 입력 5 (21) 차단 2 (24) 치다 6 (28)	100.00 □사용 (0) 100.00%)로 프로세스 호는 소수점 2자리를 -50 ~ 200°C로 설정 설정값 1 (1) = 데이터 입력 2 (10) = 데이터 입력 5 (13) = 데이터 입력 8 (16) 온도 입력 3 온도 입력 6 차단 3 (25)	% - :되고 설정값 사용합니다 해야 합니다 기패드 AI 3 (프로서 (19) (22)	-1000.0 0 X 최소, 최대여 . 온도 입력을 = 설정값 2 (2 5) 8) 테스 데이터 입 테스 데이터 입 테스 데이터 입	1000.0 30 나 따라 설정하는) 1ª 3 (11) 력 6 (14)
A.36.31 A.36.32	<i>평균(Source 1</i> 1060 피드 포 모든 피드 포워드 1061 피드 포 AI 및 프로세스 데 조정됩니다. 주의! 경우, 설정값 최소 미사용 (0) AIC (3) AI 4 (6) 프로세스 데이터 역 프로세스 데이터 역 프로세스 데이터 역 온도 입력 1 (17) 온도 입력 4 (20) 차단 1 (23)	과 Source 2) (9) 프워드 기능 게인 기승의 공통 게인 기능의 공통 게인 표정 (0.00~) 프로세스 데이터 입력 (1.00~) 입력 1.00~) 입력 1.00 프로세스 입력 4.02 프로세스 입력 7.05 프로세스 입력 7.05 프로세스 입력 5.020 프로세스 입력 7.05 프로세스 입력 5.020 프로세스 입 5.020 프로세스 입 6.020 프로세스 입 7.050 프로세스 입 7.050 프로세스 입 7.050 프로세스 입 7.050 프로세스 일 7.050 프로세스 일 7.050 프로세스 일 7.050 프로세스 일 7.050 프로/ 지 7.050 프로/ 지 7.050 프로/ 지 7.050 프로/ 지 7.050 프로/ 의 7.050 프로/ 의 7.050 프로/ 지 7.	100.00 미사용 (0) 100.00%)로 프로세스 호는 소수점 2자리를 -50 ~ 200°C로 설정 설정값 1 (1) 더이터 입력 5 (13) 더이터 입력 5 (13) 도 데이터 입력 8 (16) 온도 입력 3 온도 입력 6 차단 3 (25) 차단 7 (29)	%	-1000.0	1000.0 30 I 따라 설정하는) 력 3 (11) 력 6 (14))))
A.36.31 A.36.32	<i>평균(Source 1</i> 1060 피드 포 모든 피드 포워드 1061 피드 포 지 및 프로 세스 데 조정됩니다. 주의! 경우, 설정 값 최소 미사용(0) AIC (3) AI 4 (6) 프로세스 데이터 6 프로세스 데이터 6 프로세스 데이터 6 프로세스 데이터 6 포로세스 데이터 6 포로세스 데이터 6 파로 1 (20) 차단 5 (27) 차단 9 (31)	과 Source 2) (9) 적위드 기능 개인 기능의 공통 개인 기능의 공통 개인 표정도 1 소스 선택 이터 입력은 백분율(0.00~ 프로세스 데이터 입력 신 및 최대 범위 파라미터를 기패드 가 시V (4) AIV (4) 입력 1 (9) 프로세스 입력 7 (15) 프로세스 입력 7 (15) 프로세스 온도 입력 5 (21) 차단 6 (28) 차단 10 (32) 자인 1 차소	100.00 □사용 (0) 100.00%)로 프로세스 호는 소수점 2자리를 -50 ~ 200°C로 설정 설정값 1 (1) = 데이터 입력 2 (10) = 데이터 입력 5 (13) = 데이터 입력 8 (16) 온도 입력 3 온도 입력 3 온도 입력 6 차단 3 (25) 차단 7 (29)	% - ····································	-1000.0 0 값 최소, 최대여 . 온도 입력을 = 설정값 2 (2 5) 8) 네스 데이터 입 네스 데이터 입 네스 데이터 입 차단 4 (26 차단 8 (30	1000.0 30 I 따라 설정하는) 력 3 (11) 력 6 (14)
A.36.31 A.36.32 A.36.33	<i>평균(Source 1</i> 1060 피드 포 모든 피드 포워드 1061 피드 포 AI 및 프로세스 데 조정됩니다. 주의! 경우, 설정값 최소 미사용 (0) AIC (3) AI 4 (6) 프로세스 데이터 역 프로세스 데이터 역 프로세스 데이터 역 온도 입력 4 (20) 차단 1 (23) 차단 5 (27) 차단 9 (31)	과 Source 2) (9) 전워드 기능 개인 기승의 공통 개인 지상 전 박 문 원(0.00~ 프로세스 데이터 입력은 백문 원(0.00~ 프로세스 데이터 입력 신 및 최대 범위 파라미터를 기패드 가 지V (4) AIV (4) 입력 1 (9) 프로세스 입력 4 (12) 프로세스 입력 7 (15) 프로세스 온도 입력 5 (21) 차단 2 (24) 차단 6 (28) 차단 10 (32) 환원드 1 최소 프리 4.7	100.00 미사용 (0) 100.00%)로 프로세스 호는 소수점 2자리를 -50 ~ 200°C로 설정 설정값 1 (1) 의미이터 입력 5 (13) 데이터 입력 5 (13) 데이터 입력 8 (16) 온도 입력 3 온도 입력 6 차단 3 (25) 차단 7 (29)	% - 도되고 설정값 사용합니다 해야 합니다 키패드 AI 3 (AI 6 (프로从 (19) (22) %	-1000.0 0 X 최소, 최대여 오도 입력을 - 설정값 2 (2 5) 8) 네스 데이터 입 네스 데이터 입 차단 4 (26 차단 8 (30 -200.00	1000.0 30 I 따라 설정하는 이 력 3 (11) 력 6 (14))) 200.00
A.36.31 A.36.32 A.36.33	<i>평균(Source 1</i> 1060 피드 포 모든 피드 포워드 1061 피드 포 지 및 프로 시스 데 조정됩니다. 주의! 경우, 설정 값 최소 미사용 (0) AIC (3) AI 4 (6) 프로세스 데이터 6 프로세스 데이터 6 프로세스 데이터 6 프로세스 데이터 6 동도 입력 1 (17) 온도 입력 1 (17) 온도 입력 4 (20) 차단 1 (23) 차단 5 (27) 차단 9 (31) 1062 피드 표	과 Source 2) (9) 전워드 기능 개인 기능의 공통 개인 지역 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전	100.00 미사용 (0) 100.00%)로 프로세스 호는 소수점 2자리를 -50 ~ 200°C로 설정 설정값 1 (1) 의이터 입력 2 (10) 데이터 입력 5 (13) 데이터 입력 8 (16) 온도 입력 3 온도 입력 6 차단 3 (25) 차단 7 (29)	% - 도되고 설정값 사용합니다 해야 합니다 키패드 AI 3 (AI 6 (프로서 (19) (22) %	-1000.0 0 X 최소, 최대여 · 온도 입력을 · · · · · · · · · · · · · · · · · · ·	1000.0 30 ○
A.36.31 A.36.32 A.36.33 A.36.34	<i>평균(Source 1</i> 1060 피드 포 모든 피드 포워드 1061 피드 포 AI 및 프로세스 데 조정됩니다. 주의! 경우, 설정 값 최소 미사용 (0) AIC (3) AI 4 (6) 프로세스 데이터 역 프로세스 데이터 역 프로세스 데이터 위 온도 입력 ↓ (20) 차단 1 (23) 차단 5 (27) 차단 9 (31) 차단 9 (31) 치단 9 (31)	과 Source 2) (9) 전워드 기능 개인 기승의 공통 개인 기능의 공통 개인 전체 전위드 1 소스 선택 이이 입력은 백분율(0.00~ 프로세스 데이터 입력 신 및 최대 범위 파라미터를 기패드 가 기패드 가 입력 1 (9) 프로세스 입력 4 (12) 프로세스 입력 7 (15) 프로세스 입력 7 (15) 프로세스 입력 7 (15) 프로세스 입력 5 (21) 차단 2 (24) 차단 6 (28) 차단 10 (32) 전워드 1 최소 프로세드 호의 최소값. 프로세드	100.00 미사용 (0) 100.00%)로 프로세스 호는 소수점 2자리를 -50 ~ 200°C로 설정 설정값 1 (1) - 데이터 입력 2 (10) - 데이터 입력 5 (13) - 데이터 입력 8 (16) 온도 입력 3 온도 입력 6 차단 3 (25) 차단 7 (29) 100.00	% - 도되고 설정값 사용합니다 해야 합니다 키패드 AI 3 (AI 6 (프로시 (19) (22) %	-1000.0 0 ☆ 최소, 최대여 오도 입력을 실정값 2 (2 5) 8) 네스 데이터 입 네스 데이터 입 차단 4 (26 차단 8 (30) -200.00	1000.0 30 I 따라 설정하는 여 3 (11) 력 6 (14) 200.00 200.00

A.36.35	1064	피드 포워드 2 소스 신	拉택	미사용	· (0)	-	0	30	
	AI 및 프로	세스 데이터 입력은 백	분율(0.00~	100.00%)로 프로세스	되고 설정값	, 최소, 최대에	따라	
	조정됩니다	다. 주의! 프로세스 데이	터 입력 신	호는 소수	≻점 2자리를	사용합니다	. 온도 입력을 '	설정하는	
	경우, 설정	값 최소 및 최대 범위 :	파라미터를	-50 ~ 2	00°C로 설정	해야 합니다			
	미사용 (0) 키			키패드 설정값 1 (1)			키패드 설정값 2 (2)		
	AIC (3)		AIV (4)			AI 3 (5)		
	AI 4 (6)		AI 5 (7)			AI 6 (8)		
	프로세스	데이터 입력 1 (9)	프로세스	데이터	입력 2 (10)	프로서	네스 데이터 입	력 3 (11)	
	프로세스	데이터 입력 4 (12)	프로세스	데이터	입력 5 (13)	프로서	프로세스 데이터 입력 6		
	프로세스	데이터 입력 7 (15)	프로세스	프로세스 데이터 입력 8 (16)					
	온도 입력	1(17) 온도 (입력 2 (18)	력 2 (18) 온도 입력 3 (19)		(19)			
	온도 입력	4 (20) 온도 입	입력 5 (21)	5 (21) 온도 입력 6 (22)		(22))		
	차단 1 (23	3)	차단 2 (2	24)		차단	차단 3 (25) 차단 6 (28) 차단 9 (31)		
	차단 4 (26	5)	차단 5 (2	27)		차단			
	차단 7 (29	9)	차단 8 (3	30)		차단			
	차단 10 (3	32)							
A.36.36	1065	피드 포워드 2 최소		0.00		%	-200.00	200.00	
	최소 아날	로그 신호의 최소값.							
A.36.37	1066	피드 포워드 2 최대		100.00	1	%	-200.00	200.00	
	최대 아날.	로그 신호의 최대값.							

84. 표: PID 하위 메뉴 항목

A.37 -PID 추가 기능 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대			
A.37.1	1016	SP 1 슬립 주파수	0.00	Hz	0.00	320.00			
	출력 주파-	수가 <i>SP 1 슬립 지연</i> 으로 설정	한 시간보다 더 오랫동안	해당 한계깂	: 이하가 되면	! 인버터는			
	슬립 모드	로 들어갑니다.							
A.37.2	1017	SP 1 슬립 지연	0.00	초	0.00	3000.00			
	인버터가 ?	덩지하기 전 주파수가 슬립 레	벨 이하를 유지해야 하는	최소한의 시	간.				
A.37.3	1018	SP 1 슬립 기능 Wake-	0.00	가변	0.00	0.00			
		up 레벨							
	PID 피드백	값 Wake-up 감시에 대한 레	벨을 제공합니다. 설정 프	로세스 단위	를 사용합니	다.			
A.37.4	1019	SP 1 슬립 기능 Wake-	절대 레벨 (0)	-	0	1			
		up 모드							
	SP 1 슬립	<i>기능 Wake-up 레벨</i> 작동 선택	Щ.						
	절대 레벨	(0)	상대 설정값 (1)						
A.37.5	1075	SP 2 슬립 주파수	0.00	Hz	0.00	320.00			
	출력 주파-	수가 <i>SP 2 슬립 지연</i> 으로 설정	한 시간보다 더 오랫동안	해당 한계값	이하가 되면	! 인버터는			
	슬립 모드	로 들어갑니다.							
A.37.6	1076	SP 2 슬립 지연	0.00	초	0.00	3000.00			
	인버터가 ?	성지하기 전 주파수가 슬립 레	벨 이하를 유지해야 하는	최소한의 시	간.				
A.37.7	1077	SP 2 슬립 기능 Wake-	0.00	가변	0.00	0.00			
		up 레벨							
	PID 피드백	값 Wake-up 감시에 대한 레	벨을 제공합니다. 설정 프	트로세스 단위	를 사용합니	다.			
A.37.8	1020	SP 2 슬립 기능 Wake-	절대 레벨 (0)	-	0	1			
		up 모드							
	<i>SP 2 슬립</i>	<i>기능 Wake-up 레벨</i> 작동 선택	백. ····································						
	절대 레벨	(0)	상대 설정값 (1)		-				
A.37.20	1189	설성값 1 압력 손실	비왈성화 (0)	-	0	1			
	서 지 구 1 이	모상 왈싱와							
	설정값 1에 대한 압력 손실 보상 활성화.								
	미월경와 (화서히 (1)	0)							
Δ 37 21	글 8 의 (파) 1100	서저가 1 치대 아려	71.14	가벼	가벼	7년			
A.37.21	1150			10		10			
	주파수에 비	비례해 추가되는 값							
	1 -1 1 -1 -		FreqOut – MinFre	a					
	Setpoint co	ompensation = max compens	sation MayErag MinFre	<u>4</u>					
A 27 22	1101	서저가 그 아려 소시	Maxrieq – Minrie	q	0	1			
A.37.22	1191	실정없 2 입덕 논설 비사 화서하	미월경와 (0)	-	0	T			
	서저가 1 (
A 27 22	2001 E	<i>님픽 근근 또장 필정외</i> 피 중글 서저가 2 치대 아려	기내	71.11	71.11	71.11			
A.37.23	1192	고 이 따 스 기 네 ㅂ ㅋ 소시 ㅂ사	기만	기란	기란	기만			
	<u> 석전간 1</u> :	 치 <i>대 안렬 소신 비산</i> 과 도인							
A 37 30	1094	<u> </u>	비확성하 (0)	-	0	1			
/	비환성하 (<u> </u>				-			
	티글 O 뙤 (화선하 (1)	o,							
	ㄹㅇㅋ (ㅗ)								

IX	ID	이름	기본값	단위	최소	최대	
A.37.31	1055	소프트 필 주파수	20.00	Hz	0.00	50.00	
	인버터는 기	데어가 시작되기 전 이 주파수	까지 가속합니다. 그 3	¤, 인버터는 정·	상 PID 제어 <u>-</u>	고드로	
	들어갑니디	ŀ.					
A.37.32	1095	소프트 필 레벨	0.00	가변	가변	가변	
	인버터는 3	피드백이 이 값에 도달할 때까	·지 PID 시동 모드에서	작동합니다. 그	.런 다음, 컨트	롤러가	
	제어하기	시작합니다.					
A.37.33	1096	소프트 필 타임아웃	0	초	0	30000	
	목표값이 혀	해당 시간에 도달하지 않는 경	우, 고장 또는 알람이	표시됩니다.			
	0 = 타임이	h웃 없음. 주의! 값을 0으로 설	정한 경우, 고장이 표/	되지 않습니디	ŀ.		
A.37.34	748	PID 소프트 필 타임아웃	정지 모드에 따른	-	0	5	
		반응	고장 정지 (4)				
	동작 없음	(0)	이전 기련	든 주파수 알람	(3)		
	알람 (1)		정지 모드	에 따른 고장	에 따른 고장 정지 (4)		
	사전설정 _	고장 주파수 알람 (2)	프리런으	로 고장 정지 (!	5)		

85. 표: PID 추가 기능 하위 메뉴 항목

A.38 --PID 보호 하위 메뉴

IX	ID	이름	기본값		단위	최소	최대
A.38.1	735	피드백 감시 활성화	비활성화 (0)		-	0	1
	비활성화	(0)	활성화	(1)			
A.38.2	736	피드백 감시 상한	가변		가변	가변	가변
	최대 실제	/프로세스 값 감시.					
A.38.3	758	피드백 감시 하한	가변		가변	가변	가변
	최소 실제	/프로세스 값 감시.					
A.38.4	737	피드백 감시 지연	0.00		초	0.00	30000
	목표값이	해당 시간에 도달하지 읺	는 경우, 고장 또	는 알람이 표시	됩니다.		
A.38.5	749	피드백 감시 고장에	정지 모드에	따른 고장	-	0	5
		대한 반응	정지 (4)				
	동작 없음	(0)		이전 기준 주	파수 알람 (3)	
	알람 (1)			정지 모드에	따른 고장 정	지 (4)	
	사전설정	고장 주파수 알람 (2)		프리런으로.	고장 정지 (5)		
A.38.11	1685	입력 압력 감시 활성화	비활성화 (0)		-	0	1
	비활성화	(0)	활성화	(1)			
A.38.12	1686	입력 압력 감시 신호	0		-	0	23
	입력 압력	측정 신호 소스.					
	아날로그	입력 1 (0) 아날로그	그 입력 2 (1)	아날로그 입	력 3 (2)	아날로그 입력	력 4 (3)
	아날로그	입력 5 (4) 아날로그	그 입력 6 (5)				
	프로세스	데이터 입력 1 (6)	프로세스 데이티	네 입력 2 (7)	프로세크	스 데이터 입력	3 (8)
	프로세스	데이터 입력 4 (9)	프로세스 데이티	너 입력 6 (11)	프로세크	스 데이터 입력	5 (10)
	프로세스	데이터 입력 7 (12)	프로세스 데이티	입력 8 (13)			
	차단 1 (14	4) 자단 2 ((15)	차단 3 (16)		자단 4 (17)	
	차단 5 (18	3) 자단 6 ((19)	차단 7 (20)		자단 8 (21)	
	자난 9 (22	2) 자난 10	(23)			2	0
A.38.13	1687	입력 압력 감시 난위	2		가변 	0	8
		· 선택 · 너태 가니 나누르 도퍼·		네 디이르 ㅠㅋ			
A 20.14	감시 단위	신택. 감시 신오들 소성이	아여 패틸에서 구	싱 단위들 프도	·세스알 수 있	[읍니다. 	4
A.38.14	1088	입덕 압덕 감시 난위	2		-	0	4
		_ 오구섬 기 서태					
A 20 1E	오구겸 자 1690	이려 아려 가지 다이	기버		기버	기버	기버
A.56.15	1009	입덕 입덕 검지 단위	기면		가면	가면	가면
A 29 16	1600	이려 아려 가지 다이			71.65	71.11	71.111
A.30.10	1090	합력 합력 검직 컨퓌 치대가	기민		기민	기민	기민
	시ㅎ 친소	기대따 갔으 예르 드어 4mA아		기m Δ 아 인 치 하	 [다 간은 이	- 	에서
	신호 피고 서혀ㅇㄹ	ᆹᅳ 엘 ᆯᇬ, ᠇ᠠᠠᢈᠴ, 좄저되니다	신호 피넶는 자	께서지 길지갑	ᅴᅴᆞᆹᆮ ᅴ	ᆯᅮᆹᄭᅁ	
A.38.17	1691	고 8 입 기 다. 이 려 안 려 간 시 악 락	가변		가변	가벼	가벼
/	1031	리닉 리닉 리시 같다.			10		11
	감시 신호	 가 <i>입력 압력 간시 고</i> 조		가보다 더 ㅇㄹ	비시가 동아 역	 앜람 레벡 이히	인 경우
	입어 인포 알람이 표	시됩니다.					2.017

IX	ID	이름	기본값	단위	최소	최대
A.38.18	1692	입력 압력 감시 단위 고장 레벨	가변	가변	가변	가변
	감시 신호	가 <i>입력 압력 감시 고장 지</i>	<i>연</i> 에 설정된 시간보다 더 오립	괜 시간 동안 .	고장 레벨 이ㅎ	·인 경우,
A 20 10	표정이 표 1(02	시됩니다.	F 00	+	0.00	CO 00
A.38.19	1093	입덕 입덕 감지 단위 고장 지연	5.00	소 	0.00	60.00
	감시 알람	또는 고장을 표시하는 동안	안의 지연 시간.			
A.38.20	1695	입력 압력	가변	가변	가변	가변
	입력 압력	감시 설정 신호를 모니터량	빙한 값. <i>감시 단위 소수점</i> 에서	너와 같은 스커	∥일 값.	
A.38.31	1704	서리 보호	비활성화 (0)	-	0	1
	비활성화	(0)	활성화 (1)	·	·	
A.38.32	1705	서리 보호 온도 신호	아날로그 입력 1 (6)	-	0	29
	온도 입력	1(0) 온도 입력	2(1) 온도 입력 3	(2)	온도 입력 4	(3)
	온도 입력	5 (4) 온도 입력	6 (5)			
	아날로그	입력 1 (6) 아날로그	입력 2 (7) 아날로그 입	력 3 (8)	아날로그 입	력 4 (9)
	아날로그	입력 5 (10) 아날로그	입력 6 (11)			
	프로세스	데이터 입력 1 (12) 프	프로세스 데이터 입력 2 (13)	프로세:	스 데이터 입력	3 (14)
	프로세스	데이터 입력 4 (15) 프	프로세스 데이터 입력 5 (16)	프로세:	스 데이터 입력	6 (17)
	프로세스	데이터 입력 7 (18) 프	프로세스 데이터 입력 8 (19)			
	차단 1 (20	0) 차단 2 (21	.) 차단 3 (22)		차단 4 (23)	
	차단 5 (24	4) 차단 6 (25	5) 차단 7 (26)		차단 8 (27)	
	차단 9 (28	8) 차단 10 (2	29)			
A.38.33	1706	서리 보호 온도 신호	-50.00	가변	-100.00	가변
		최소				
	설정 온도	신호의 최소값과 일치하는	· 온도 값.			
A.38.34	1707	서리 보호 온도 신호	200.00	가변	가변	300.00
		최대				
	설정 온도	신호의 최대값과 일치하는	· 온도 값.			
A.38.35	1708	서리 보호 온도	5.00	가변	가변	가변
	서리 보호	기능이 활성화되는 온도 혀	아한값			
A.38.36	1710	서리 보호 주파수	10.00	Hz	0.00	가변
	서리 보호	. 기능이 활성화될 때 이용되	니는 정수 기준 주파수.			

86. 표: PID 보호 하위 메뉴 항목

A.39 - 외부 PID 하위 메뉴

IX	ID	이름		기본값	단위	최소	최대
A.39.1	1630	외부 PID 활성화		비활성화 (0)	-	0	1
	비활성화	(0)		•			
	활성화 (1)					
A.39.2	1049	외부 PID 시작 신호		DIN_Port02	-	0	10
				(10) = 참			
	선택 가능	한 열거값은 모든 디기	이털 입력에 대	해 동일합니다.			
	거짓 = 정	지 모드 시 외부 PID	컨트롤러				
	참 = 외부	- PID 컨트롤러 조절.					
A.39.3	1100	정지 시 출력		0.00	%	0.00	100.00
	디지털 출	·력에서 정지된 경우 최	티대 출력값의 '	백분율로 나타낸	PID 컨트롤리	러의 출력값.	
A.39.4	1631	PID 이득		100.00	%	0.00	1000.00
	파라미터	값을 100%로 설정한	경우, 오차값 1	.0% 변동은 컨트블	롤러 출력 10)% 변동을 발생 . -	시킵니다.
A.39.5	1632	PID 적분 시간		1.00	초	0.00	600.00
	파라미터	값을 1.00s로 설정한	경우, 오차값 1	0% 변동은 컨트를	롤러 출력 10	.00%/s 변동을 빌	날생
	시킵니다.						
A.39.6	1633	PID 미분 시간		0.00	초	0.00	100.00
A.39.7	1635	<u> 프로세스 단위 선택</u>		0s	-	0	37
	실세값에	내한 난위를 선택하서	[요.				
	04	1	(2)	(2)		(4)	(5)
	70	(1) min	(2)	<i>rpm</i> (3)	ррт	(4) <i>pp</i>	5 (5)
	_/	(6) /	(7) -	/ (8)	kg	(9) <u>kg</u>	7 (10)
	5	min	. ,	h í	5	i mi	in i i
	$\frac{kg}{h}$	(11) $\frac{m^2}{s}$	(12) -	$\frac{m^2}{min}$ (13)	$\frac{m^2}{h}$	$(14) - \frac{m}{5}$	(15)
	mbar	(16) <i>bar</i>	(17)	<i>Pa</i> (18)	kPa	(19) <i>m</i> l	/5 (20)
	kW	(21) °C	(22) -	gal (23)	gal	(24) ga	n/ (25)
		(22) C	()	5	min	(, h	(23)
	<u>_/b</u>	(26) $\frac{lb}{min}$	(27) -	/b (28)	<u>ft</u> ^s	(29) $\frac{ft}{m}$	(30)
	5 #3	11111 ft		"	3	111	
	$\frac{h}{h}$	$(31) \frac{\pi}{s}$	(32) in	nwg (33)	ft wg	(34) <i>SF</i>	27 (35)
	lb	(26)	(27)	(2 0)	-	(20) 4	(40)
	in ²	(36) <i>psig</i>	(37)	np (38)	7	(39) 1	(40)
	inch	(41) <i>mm</i>	(42)	<i>cm</i> (43)	m	(44) <i>apr</i>	n (45)
			,,	()		, , , , , , , , , , , , , , , , , , ,	(,
	cfm	(46)					
A.39.8	1664	최소 프로세스 단위		0	가변	가변	가변
A.39.9	1665	최대 프로세스 단위		100	가변	가변	가변

IX	ID	이름		기본값	단위	최소	최대
A.39.10	1666	프로세스 단위 소수점		2	-	0	4
		•				•	
A.39.11	1636	오류 변환		0	-	0	1
		I			1	1	
A.39.12	1637	불감대		0.00	가변	가변	가변
		I				I	
A.39.13	1638	불감대 지연		0.00	초	0.00	320.00
A.39.14	1640	키패드 설정값 1		0.00	가변	0.00	100.00
					. –		
A.39.15	1641	키패드 설정값 2		0.00	가변	0.00	100.00
A.39.16	1642	설정값 램프 시간		0.00	초	0.00	300.00
A.39.17	1048	외부 PID 선택 설정값		DIN Port01	-	0	10
				- (9) = 거짓			
	선택 가능	' 한 열거값은 모든 디지털	입력에 대	해 동일합니다.			
	거짓 = PI		거트롤러에	·····································	을 합니다.		
	참 = PID	설정값 2가 외부 PID 컨트	트롤러에 대	한 설정값 역할을	합니다.		
A.39.18	1643	설정값 1 소스 선택		키패드	-	0	32
				설정값 1 (1)			
	AI 및 프로	르세스 데이터 입력은 백분	분율(0.00~1)0.00%)로 프로세ź	스되고 설정	값 최소, 최대에	따라
	조정됩니데	구.					
	주의! 프로	르세스 데이터 입력 신호는	= 소수점 27	아리를 사용합니다.	. 온도 입력	을 설정하는 경우	우, 설정값
	최소 및 초	티대 범위 파라미터를 -50	~ 200°C로	설정해야 합니다.			
	미사용 (0))	키패드 설	정값 1 (1)	키패	드 설정값 2 (2)	
	AIC (3)		AIV (4)		AI 3	(5)	
	AI 4 (6)		AI 5 (7)		AI 6	(8)	
	프로세스	데이터 입력 1 (9)	프로세스	데이터 입력 2 (10)	프로	세스 데이터 입	력 3 (11)
	프로세스	데이터 입력 4 (12)	프로세스	데이터 입력 5 (13)	프로	세스 데이터 입	력 6 (14)
	프로세스	데이터 입력 7 (15)	프로세스	데이터 입력 8 (16)			
	온도 입력	1 (17) 온도 입	력 2 (18)	온도 입력	3 (19)		
	온도 입력	4 (20) 온도 입	력 5 (21)	온도 입력	6 (22)		
	차단 1 (23	3)	차단 2 (24)	차단	3 (25)	
	차단 4 (26	6)	차단 5 (27	())	차단	6 (28)	
	차단 7 (29	9)	차단 8 (30))	차단	9 (31)	
	차단 10 (3	32)					
A.39.19	1644	최소 설정값 1		0.00	%	-200.00	200.00
	최소 아날	로그 신호의 최소값.					
A.39.20	1645	최대 설정값 1		100.00	%	-200.00	200.00
	최대 아날	로그 신호의 최대값.					
A.39.21	1646	설정값 2 소스 선택		미사용 (0)	-	0	32
	AI 및 프로	르세스 데이터 입력은 백분	본율(0.00~1	00.00%)로 프로세크	스되고 설정	값 최소, 최대에	따라
	조정됩니	구.					

	ID	이름		기본값	단위	최소	최대	
	주의! 프로	세스 데이터 입력 신	· - 호는 소수점 2	자리를 사용합니다	. 온도 입력	을 설정하는 경우	우, 설정값	
	최소 및 초	대 범위 파라미터를	-50 ~ 200°C로	실정해야 합니다.				
	미사용 (0))	키패드 설	정값 1 (1)	키파	드 설정값 2 (2)		
	AIC (3)		AIV (4)		AI 3	(5)		
	AI 4 (6)		AI 5 (7)		AI 6	AI 6 (8)		
	프로세스	데이터 입력 1 (9)	프로세스	데이터 입력 2 (10)	프로	세스 데이터 입	력 3 (11)	
	프로세스	데이터 입력 4 (12)	프로세스	데이터 입력 5 (13)	프로	세스 데이터 입	력 6 (14)	
	프로세스	데이터 입력 7 (15)	프로세스	데이터 입력 8 (16)				
	온도 입력	1 (17) 온도	도 입력 2 (18)	온도 입력	3 (19)			
	온도 입력	4 (20) 온묘	도 입력 5 (21)	온도 입력	6 (22)			
	차단 1 (23	3) 차단	<u>-</u> 2 (24)	차단 3 (25))	차단 4 (26)	1	
	차단 5 (27	7) 차단	<u>라</u> 6 (28)	차단 7 (29))	차단 8 (30)	1	
	차단 9 (31	L) 차단	<u>라</u> 10 (32)					
A.39.22	1647	최소 설정값 2		0.00	%	-200.00	200.00	
	최소 아날	로그 신호의 최소값.						
A.39.23	1648	최대 설정값 2		0.00	%	-200.00	200.00	
	최대 아날	로그 신호의 최대값.						
A.39.24	1650	피드백 기능		1	-	1	9	
	Sour	rce 1 만 사용	(1)	$\sqrt{Source 1}$		(2)		
	Source	e 1 - Source 2	(3)	$\sqrt{Source 1} + \sqrt{1}$	Source 2	(4)		
	Voone		(5)	Voounce 1 - V.		(-)		
	Source	e 1 + Source 2	(5)	Source 1 - Sou	urce 2	(6)		
	최소(Source 1 또는 Source 2) (7) 최대(Source 1 또는 Source 2) (8)							
	<i>최소(So</i>	urce 1 또는Source 2	?) (7)	초/대(Source 1	또는 Source	2) (8)		
	최소(Sol 평균(Sol	urce 1 또는 Source 2 urce 1 과 Source 2	?) (7) ?) (9)	최대(Source 1	또는 Source	<i>2)</i> (8)		
A.39.25	<i>최소(Sol</i> 평균(Sol 1651	<i>urce 1 또는 Source 2</i> <i>urce 1 과 Source 2</i> 피드백 기능 이득	? <i>)</i> (7) ? <i>)</i> (9)	<i>초[대] (Source 1</i> 100.00	또는 Source %	<i>2)</i> (8) -1000.00	1000.00	
A.39.25	<i>최소(Sol</i> <i>평균(Sol</i> 1651 모든 피드	<i>urce 1 또는 Source 2</i> <i>urce 1 과 Source 2</i> 피드백 기능 이득 백 기능의 공통 게인	? <i>)</i> (7) ? <i>)</i> (9)	<i>초[대] (Source 1</i> 100.00	<i>또는 Source</i> %	2) (8) -1000.00	1000.00	
A.39.25 A.39.26	<i>최소(Sol</i> <i>평균(Sol</i> 1651 모든 피드 1652	urce 1 또는 Source 2 urce 1 과 Source 2 피드백 기능 이득 백 기능의 공통 게인 피드백 1 소스 선택	?) (7) ? <u>)</u> (9) !.	<i>초[대] Source</i> 1 100.00 AIC (1)	£ 	2) (8) -1000.00 0	1000.00 30	
A.39.25 A.39.26	<i>최소(Sol</i> <i>평균(Sol</i> 1651 모든 피드 1652 AI 및 프로	urce 1 또는 Source 2 urce 1 과 Source 2 피드백 기능 이득 백 기능의 공통 게인 피드백 1 소스 선택 네스 데이터 입력은	? / (7) ? / (9) !. : · 백분율(0.00~1	<i>최대(Source 1</i> 100.00 AIC (1) 00.00%)로 프로세크	또는 Source % - 스되고 피드	<i>2)</i> (8) -1000.00 0 백 최소, 최대에	1000.00 30 따라	
A.39.25 A.39.26	<i>최소(Sol</i> <i>평균(Sol</i> 1651 모든 피드 1652 AI 및 프로 조정됩니다	urce 1 또는 Source 2 피드백 기능 이득 백 기능의 공통 게인 피드백 1 소스 선택 세스 데이터 입력은 다. 주의! 프로세스 더	?) (7) ?) (9) !. · 백분율(0.00~1 비이터 입력 신호	<i>최대(Source 1</i> 100.00 AIC (1) 00.00%)로 프로세크 는 소수점 2자리를	또는 Source % - 스되고 피드 · 사용합니디	<i>2)</i> (8) -1000.00 이 백 최소, 최대에 다. 온도 입력을	1000.00 30 따라 설정하는	
A.39.25 A.39.26	<i>최소(Sol</i> <i>평균(Sol</i> 1651 모든 피드 1652 AI 및 프로 조정됩니다 경우, 설정	urce 1 또는 Source 2 피드백 기능 이득 백 기능의 공통 게인 피드백 1 소스 선택 세스 데이터 입력은 다. 주의! 프로세스 더 값 최소 및 최대 범석	? / (7) ? / (9) !. · 백분율(0.00~1 비이터 입력 신호 위 파라미터를 -	<i>최대(Source 1</i> 100.00 AIC (1) 00.00%)로 프로세크 는 소수점 2자리를 50 ~ 200°C로 설정	또는 Source % - 스되고 피드 · 사용합니다 성해야 합니다	2) (8) -1000.00 이 백 최소, 최대에 다. 온도 입력을 - 다.	1000.00 30 따라 설정하는	
A.39.25 A.39.26	<i>최소(Sol</i> <i>평균(Sol</i> 1651 모든 피드 1652 AI 및 프로 조정됩니다 경우, 설정 미사용(0)	urce 1 또는 Source 2 피드백 기능 이득 백 기능의 공통 게인 피드백 1 소스 선택 세스 데이터 입력은 다. 주의! 프로세스 더 값 최소 및 최대 범석	?) (7) ?) (9)	<i>최대(Source 1</i> 100.00 AIC (1) 00.00%)로 프로세크 는 소수점 2자리를 50 ~ 200°C로 설정	또는 Source % - 스되고 피드 · 사용합니다 하야 합니다	<i>2)</i> (8) -1000.00 백 최소, 최대에 나. 온도 입력을 · 다.	1000.00 30 따라 설정하는	
A.39.25 A.39.26	<i>철소(Sol</i> <i>평균(Sol</i> 1651 모든 피드 1652 AI 및 프로 조정됩니다 경우, 설정 미사용 (0) AIC (1)	urce 1 또는 Source 2 피드백 기능 이득 백 기능의 공통 게인 피드백 1 소스 선택 세스 데이터 입력은 다. 주의! 프로세스 더 값 최소 및 최대 범석	?) (7) ?) (9) !. ⁴ · 백분율(0.00~1 비이터 입력 신호 위 파라미터를 - AIV (2)	<i>최대(Source 1</i> 100.00 AIC (1) 00.00%)로 프로세크 는 소수점 2자리를 50 ~ 200°C로 설정	또는 Source % - 스되고 피드 · 사용합니다 :해야 합니다 AI 3	2) (8) -1000.00 0 백 최소, 최대에 다. 온도 입력을 - 다. (3)	1000.00 30 따라 설정하는	
A.39.25 A.39.26	<i>최소(Sol</i> <i>평균(Sol</i> 1651 모든 피드 1652 AI 및 프로 조정됩니다 경우, 설정 미사용(0) AIC(1) AI 4(4)	urce 1 또는 Source 2 피드백 기능 이득 백 기능의 공통 게인 피드백 1 소스 선택 세스 데이터 입력은 다. 주의! 프로세스 더 값 최소 및 최대 범석	?) (7) ?) (9)	<i>최대(Source 1</i> 100.00 AIC (1) 00.00%)로 프로세 는 소수점 2자리를 50 ~ 200°C로 설정	또는 Source % - 스되고 피드 · 사용합니다 성해야 합니다 AI 3 AI 6	2) (8) -1000.00 백 최소, 최대에 다. 온도 입력을 - 다. (3) (6)	1000.00 30 따라 설정하는	
A.39.25 A.39.26	<i>철소(Sol</i> <i>평균(Sol</i> 1651 모든 피드 1652 AI 및 프로 조정됩니다 경우, 설정 미사용 (0) AIC (1) AI 4 (4) 프로세스	urce 1 또는 Source 2 피드백 기능 이득 백 기능의 공통 게인 피드백 1 소스 선택 세스 데이터 입력은 다. 주의! 프로세스 더 값 최소 및 최대 범석	?) (7) ?) (9)	<i>최대(Source 1</i> 100.00 AIC (1) 00.00%)로 프로세크 는 소수점 2자리를 50 ~ 200°C로 설정 데이터 입력 2 (8)	또는 Source % 스되고 피드 · 사용합니다 3해야 합니다 AI 3 AI 6 프로	2) (8) -1000.00 인 최소, 최대에 다. 온도 입력을 - 다. (3) (6) 세스 데이터 입	1000.00 30 따라 설정하는 력 3 (9)	
A.39.25 A.39.26	<i>최소(Sol</i> <i>평균(Sol</i> 1651 모든 피드 1652 AI 및 프로 조정됩니다 경우, 설정 미사용(0) AIC(1) AI 4(4) 프로세스 프로세스	urce 1 또는 Source 2 피드백 기능 이득 백 기능의 공통 게인 피드백 1 소스 선택 에스 데이터 입력은 다. 주의! 프로세스 더 값 최소 및 최대 범위	?) (7) ?) (9)	최대(Source 1 100.00 AIC (1) 00.00%)로 프로세르 는 소수점 2자리를 50 ~ 200°C로 설정 데이터 입력 2 (8) 데이터 입력 5 (11)	또는 Source % - 스되고 피드 아사용합니다 해야 합니다 AI 3 AI 6 프로 프로	2) (8) -1000.00 백 최소, 최대에 태. 온도 입력을 다 다. (3) (6) 세스 데이터 입 세스 데이터 입	1000.00 30 따라 설정하는 력 3 (9) 력 6 (12)	
A.39.25 A.39.26	<i>최소(Sol</i> <i>평균(Sol</i> 1651 모든 피드 1652 AI 및 프로 조정됩니다 경우, 설정 미사용(0) AIC(1) AI 4(4) 프로세스 프로세스	urce 1 또는 Source 2 피드백 기능 이득 백 기능의 공통 게인 피드백 1 소스 선택 세스 데이터 입력은 다. 주의! 프로세스 더 값 최소 및 최대 범위 데이터 입력 1 (7) 데이터 입력 4 (10) 데이터 입력 7 (13)	?) (7) ?) (9)	<i>최대(Source 1</i> 100.00 AIC (1) 00.00%)로 프로세크 는 소수점 2자리를 50 ~ 200°C로 설정 데이터 입력 2 (8) 데이터 입력 5 (11) 데이터 입력 8 (14)	또는 Source % - 스되고 피드 · 사용합니다 3해야 합니다 AI 3 AI 6 프로 프로	2) (8) -1000.00 백 최소, 최대에 박 최소, 최대에 다. 온도 입력을 다. (3) (6) 세스 데이터 입 세스 데이터 입	1000.00 30 따라 설정하는 력 3 (9) 력 6 (12)	
A.39.25 A.39.26	<i>최소(Sou</i> <i>평균(Sou</i> 1651 모든 피드 1652 AI 및 프로 조정됩니다 경우, 설정 미사용(0) AIC(1) AI 4(4) 프로세스 프로세스 온도 입력	urce 1 또는 Source 2 피드백 기능 이득 백 기능의 공통 게인 피드백 1 소스 선택 네스 데이터 입력은 나. 주의! 프로세스 더 값 최소 및 최대 범석 데이터 입력 1 (7) 데이터 입력 4 (10) 데이터 입력 7 (13) 1 (15) 온 5	?) (7) ?) (9)	최대(Source 1 100.00 AIC (1) 00.00%)로 프로세르 는 소수점 2자리를 50 ~ 200°C로 설정 데이터 입력 2 (8) 데이터 입력 5 (11) 데이터 입력 8 (14) 온도 입력	또는 Source % - 스되고 피드 · 사용합니다 3해야 합니다 AI 3 AI 6 프로 프로 3 (17)	2) (8) -1000.00 백 최소, 최대에 태. 온도 입력을 - 다. (3) (6) 세스 데이터 입 세스 데이터 입	1000.00 30 따라 설정하는 력 3 (9) 력 6 (12)	
A.39.25 A.39.26	<i>철소(Sol</i> 평균(Sol 1651 모든 피드 1652 AI 및 프로 조정됩니다 경우, 설정 미사용(0) AIC(1) AI 4(4) 프로세스 프로세스 프로세스 온도 입력	urce 1 또는 Source 2 피드백 기능 이득 백 기능의 공통 게인 백 기능의 공통 게인 페드백 1 소스 선택 네스 데이터 입력은 네스 데이터 입력은 값 최소 및 최대 범석 데이터 입력 1 (7) 데이터 입력 4 (10) 데이터 입력 7 (13) 1 (15) 온덕 4 (18) 온덕	?) (7) ?) (9)	최대(Source 1 100.00 AIC (1) 00.00%)로 프로세르 는 소수점 2자리를 50 ~ 200°C로 설정 데이터 입력 2 (8) 데이터 입력 5 (11) 데이터 입력 8 (14) 온도 입력 온도 입력	또는 Source % - 스되고 피드 · 사용합니다 3 대야 합니다 AI 3 AI 6 프로 프로 3 (17) 6 (20)	2) (8) -1000.00 백 최소, 최대에 박 최소, 최대에 다. 온도 입력을 다. (3) (6) 세스 데이터 입 세스 데이터 입	1000.00 30 따라 설정하는 력 3 (9) 력 6 (12)	
A.39.25 A.39.26	<i>최소(Sol</i> <i>평균(Sol</i> 1651 모든 피드 1652 AI 및 프로 조정됩니다 경우, 설정 미사용(0) AIC(1) AI 4(4) 프로세스 프로세스 온도입력 온도입력 차단1(21	urce 1 또는 Source 2 피드백 기능 이득 백 기능의 공통 게인 피드백 1 소스 선택 네스 데이터 입력은 너스 데이터 입력은 다. 주의! 프로세스 더 값 최소 및 최대 범석 데이터 입력 1 (7) 데이터 입력 4 (10) 데이터 입력 7 (13) 1 (15) 온덕 4 (18) 온덕 나 차단	?) (7) ?) (9)	최대(Source 1 100.00 AIC (1) 00.00%)로 프로세르 는 소수점 2자리를 50 ~ 200°C로 설정 데이터 입력 2 (8) 데이터 입력 5 (11) 데이터 입력 8 (14) 온도 입력 온도 입력 차단 3 (23)	또는 Source % - 스되고 피드 · 사용합니다 3해야 합니다 AI 3 AI 6 프로 프로 3 (17) 6 (20)	2) (8) -1000.00 백 최소, 최대에 태. 온도 입력을 다 다. (3) (6) 세스 데이터 입 세스 데이터 입 세스 데이터 입	1000.00	
A.39.25 A.39.26	평균(50) 평균(50) 1651 모든 피드 1652 AI 및 프로 조정됩니다 경우, 설정 미사용(0) AIC (1) AI 4 (4) 프로세스 프로세스 온도 입력 차단 1 (21) 차단 5 (25)	urce 1 또는 Source 2 피드백 기능 이득 백 기능의 공통 게인 백 기능의 공통 게인 피드백 1 소스 선택 네스 데이터 입력으로 네스 데이터 입력으로 값 최소 및 최대 범죄 데이터 입력 4 (10) 데이터 입력 7 (13) 1 (15) 온덕 4 (18) 온덕 5) 차단	?) (7) ?) (9)	최대(Source 1 100.00 AIC (1) 00.00%)로 프로세르 는 소수점 2자리를 50 ~ 200°C로 설정 데이터 입력 5 (11) 데이터 입력 5 (11) 데이터 입력 8 (14) 온도 입력 온도 입력 차단 3 (23) 차단 7 (27)	또는 Source % - 스되고 피드 · 사용합니다 3 대야 합니다 AI 3 AI 6 프로 프로 3 (17) 6 (20)	2) (8) -1000.00 · 1000.00 · · 오도 입력을 · · · · · · · · · · · · · · · · · · ·	1000.00 30 따라 설정하는 력 3 (9) 력 6 (12)	
A.39.25 A.39.26	평균(50) 평균(50) 1651 모든 피드 1652 AI 및 프로 조정됩니다 경우, 설정 미사용(0) AIC(1) AI 4 (4) 프로세스 온도 입력 차단 1 (21) 차단 9 (25)	urce 1 또는 Source 2 피드백 기능 이득 백 기능의 공통 게인 백 기능의 공통 게인 피드백 1 소스 선택 네스 데이터 입력은 대스 데이터 입력은 나. 주의! 프로세스 데 대 값 최소 및 최대 범죄 대 데이터 입력 1 (7) 데이터 입력 4 (10) 데이터 입력 7 (13) 1 (15) 오 (18) 온 (19) 나) 차대 나) 차대	?) (7) ?) (9) !	최대(Source 1 100.00 AIC (1) 00.00%)로 프로세르 는 소수점 2자리를 50 ~ 200°C로 설정 데이터 입력 2 (8) 데이터 입력 5 (11) 데이터 입력 8 (14) 온도 입력 온도 입력 차단 3 (23) 차단 7 (27)	또는 Source % - 스되고 피드 · 사용합니다 해야 합니다 AI 3 AI 6 프로 3 (17) 6 (20))	2) (8) -1000.00 백 최소, 최대에 박 초소, 최대에 다. 온도 입력을 - 다. (3) (6) 세스 데이터 입 세스 데이터 입 체스 데이터 입 차단 4 (24) 차단 8 (28)	1000.00 30 따라 설정하는 력 3 (9) 력 6 (12)	
A.39.25 A.39.26 A.39.27	평균(50) 평균(50) 1651 모든 피드 1652 AI 및 프로 조정됩니다 경우, 설정 미사용(0) AIC (1) AI 4 (4) 프로세스 프로세스 온도 입력 차단 1 (21) 차단 9 (25) 1653	unce 1 또는 Source 2 피드백 기능 이득 백 기능의 공통 게인 백 기능의 공통 게인 피드백 1 소스 선택 네스 데이터 입력으로 대스 데이터 입력으로 네스 데이터 입력 1 (7) 데이터 입력 4 (10) 데이터 입력 7 (13) 1 (15) 온덕 4 (18) 온덕 차면 5) 차면 차면 5) 차면 차면 죄소 피드백 1 ************************************	?) (7) ?) (9)	최대(Source 1 100.00 AIC (1) 00.00%)로 프로세르 는 소수점 2자리를 50 ~ 200°C로 설정 데이터 입력 5 (11) 데이터 입력 5 (11) 데이터 입력 8 (14) 온도 입력 온도 입력 차단 3 (23) 차단 7 (27)	또는 Source % - 소되고 피드 사용합니다 해야 합니다 제 3 AI 3 AI 6 프로 3 (17) 6 (20)) %	2) (8) -1000.00 · 1000.00 · · 오도 입력을 · · · · · · · · · · · · · · · · · · ·	1000.00 30 따라 설정하는 력 3 (9) 력 6 (12) 200.00	
A.39.25 A.39.26 A.39.27	정군(Sole 평군(Sole 1651 모든 피드 1652 AI 및 프로 조정됩니다 경우, 설정 미사용(0) AI (4) 프로세스 프로세스 온도 입력 차단 1 (21) 차단 9 (25) 1653	unce 1 또는 Source 2 피드백 기능 이득 백 기능의 공통 게인 백 기능의 공통 게인 피드백 1 소스 선택 네스 데이터 입력으로 너너 네스 데이터 입력으로 너너 값 최소 및 최대 범죄 너너 데이터 입력 1 (7) 데이터 입력 4 (10) 데이터 입력 7 (13) 1 (15) 온드 4 (18) 온드 차면 5) 차면 차면 5) 차면 치도 회소 피드백 1 로그 신호의 최소값 조	?) (7) ?) (9)	최대(Source 1 100.00 AIC (1) 00.00%)로 프로세르 는 소수점 2자리를 50 ~ 200°C로 설정 데이터 입력 2 (8) 데이터 입력 5 (11) 데이터 입력 8 (14) 온도 입력 온도 입력 차단 3 (23) 차단 7 (27)	또는 Source % - 스되고 피드 · 사용합니다 · 대 3 AI 3 AI 6 프로 3 (17) 6 (20) > %	2) (8) -1000.00 U 최소, 최대에 내 최소, 최대에 다. 온도 입력을 다. (3) (6) 세스 데이터 입 세스 데이터 입 채단 4 (24) 차단 8 (28) -200.00	1000.00 30 따라 설정하는 력 3 (9) 력 6 (12) 200.00	

IX	ID	이름			기본	값	단위	최소	최대	
A.39.28	1654	최대 피드백 1			100.0	00	%	-200.00	200.00	
	최대 아날	로그 신호의 최[대값.							
A.39.29	1655	피드백 2 소스	선택		AIV (2)	-	0 30		
	AI 및 프로세스 데이터 입력은 백분율(0.00~			분율(0.00~10	00.00%)로 프로세스되고 피드백 최소, 최대에 따라					
	조정됩니다. 주의! 프로세스 데이터 입력 신			입력 신호	는 소수점 2자리를 사용합니다. 온도 입력을 설정하는					
	경우, 설정값 최소 및 최대 범위 파라미터				50 ~ 2	00°C로 설정	해야 합니다	다.		
	미사용 (0))								
	AIC (1)			AIV (2)			AI 3	(3)		
	AI 4 (4)			AI 5 (5)			AI 6	(6)		
	프로세스	데이터 입력 1 (7)	프로세스	로세스 데이터 입력 2 (8)			프로세스 데이터 입력 3 (9)		
	프로세스	데이터 입력 4 (10)	프로세스	. 데이터 입력 5 (11) 프로			세스 데이터 입	력 6 (12)	
	프로세스	데이터 입력 7 (13)	프로세스 데이터 입력 8 (14)						
	온도 입력	1 (15)	온도 입	력 2 (16) 온도 입력 3 (17)			3 (17)	17)		
	온도 입력	4 (18)	온도 입	력 5 (19)		온도 입력	6 (20)	20)		
	차단 1 (21	1)	차단 2 (22)		차단 3 (23))	차단 4 (24)		
	차단 5 (2!	5)	차단 6 (26)		차단 7 (27))	차단 8 (28)		
	차단 9 (29	9)	차단 10	(30)				1		
A.39.30	1656	최소 피드백 2			0.00		%	-200.00	200.00	
	최소 아날	로그 신호의 최:	소값.							
A.39.31	1657	최대 피드백 2			100.0	00	%	-200.00	200.00	
	최대 아날	로그 신호의 최대	대값.							

87. 표: 외부 PID 하위 메뉴 항목

A.40 - 외부 PID 보호 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대
A.40.1	1659	프로세스 감시 활성화	비활성화 (0)	-	0	1
	비활성화	(0)	활성화 (1)			
A.40.2	1660	프로세스 감시 상한	가변	가변	가변	가변
A.40.3	1661	프로세스 감시 하한	가변	가변	가변	가변
A.40.4	1662	프로세스 감시 지연	0	초	0	30000
	목표값이	해당 시간에 도달하지 않는 경우, 고장 또	드는 알람이 표시됩니	- 다.		
A.40.5	757	프로세스 감시 고장에 대한 반응	정지 모드에 따른	-	0	5
			고장 정지 (4)			
	동작 없음	(0)	이전 기준 주파수	≥ 알람 (3)		
	알람 (1)		정지 모드에 따른	를 고장 정지	(4)	
	사전설정	고장 주파수 알람 (2)	프리런으로 고장	정지 (5)		

88. 표: 외부 PID 보호 하위 메뉴 항목

A.41 - 다중 모터 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대				
A.41.1	1001	모터 수	1	대	1	3				
	다중 펌프	. (다중 모터) 시스템에 있는 모터 (또는	펌프나 팬)의 수량.							
A.41.2	1032	인터락 기능	활성화 (1)	-	0	1				
	인터락 횔	성화 또는 비활성화. 모터 연결 여부를	시스템에 전하는 더	∥ 인터락을	이용할 수 있	있습니다.				
	비활성화	<u>(0)</u> 활성	화 (1)							
A.41.3	1097	대역폭	10.00	%	0.00	100.00				
	설정값 백분율. 예, 설정값=5bar 일 때 대역폭=10%입니다. 피드백 값이 4.5 ~ 5.5bar 사이일 때,									
	모터는 분	는 분리 또는 제거되지 않습니다.								
A.41.4	1098	대역폭 지연	10	초	0	3600				
	피드백이	대역폭을 벗어나는 경우, 펌프를 추가 드	또는 제거하기 전 빈	<u>-</u> 드시 해당	시간이 지나	야 합니다.				
A.41.5	426	모터 1 인터락	DIN_Port01	-	0	10				
			(9) = 거짓							
A.41.6	427	모터 2 인터락	DIN_Port01	-	0	10				
			(9) = 거짓							
A.41.7	428	모터 3 인터락	DIN_Port01	-	0	10				
			(9) = 거짓							
	참 = 다중	펌프 제어 프로세스에서 제외된 모터 (5							
	선택 가능	·한 열거값은 모든 디지털 입력에 대해 -	동일합니다.							
A.41.20	1028	FC 포함	활성화 (1)	-	0	1				
	자동 변경	및 인터락 시스템 내 인버터 포함								
	비활성화	(0) 활성	화 (1)							
A.41.21	1027	자동 변경	활성화 (1)	-	0	1				
	기동 시퀀	스 및 모터 우선 순위 순환을 활성화 또	.는 비활성화합니디	·.						
	비활성화	(0) 활성	화 (1)							
A.41.22	1029	지동 변경 간격	48	시	0.00	3000.0				
	이 시간이	경과하면, 용량을 <i>자동 변경 주파수 한</i>	계 및 자동 변경 도	<i>티 한계</i> 로	설정한 레벨	이하가				
	되는 경우	· 자동 변경이 일어납니다.								
A.41.23	1031	자동 변경 주파수 한계	0.00	Hz	· 가변	25.00				
	이 파라미	터는 용량 자동 변경이 발생하기 위해 -	유지되어야 하는 히 □	·한 레벨을	규정합니다.					
A.41.24	1030	자동 변경 모터 한계	1	CH	1	3 6				
	이 파라미	터는 용량 자동 변경이 발생하기 위해 -	유지되어야 하는 히	·한 레벨을	규정합니다.					
A.41.25	1698	과압 감시 활성화	비활성화 (0)	-	0	1				
	비활성화	(0) 활성	화 (1)							
A.41.26	1699	감시 알람 레벨	0.00	가변	가변	가변				
	과압 알림	⁻ 레벨을 설정합니다.								

89. 표: 멀티 모터 하위 메뉴 항목

A.42 - 펌프 자동 세정 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대				
A.42.1	1714	세정 기능	비활성화 (0)	-	0	1				
	세정 기능	파라미터를 활성화하면,								
	P3.21.1.2. 3	파라미터에서 디지털 입력 신호가 활·	성화될 때 자동 세정	시작됩니다.						
	비활성화 (비활성화 (0)								
	활성화 (1)									
A.42.2	1715	자동 세정 활성화	DIN_Port01 (9)	-	0	10				
			= 거짓							
	선택 가능협	한 열거값은 모든 디지털 입력에 대해	동일합니다.							
A.42.3	1716	세정 사이클	5	-	1	100				
	정방향 또는	= 역방향 세척 사이클 횟수, 정방향 또	또는 역방향 세정 사여	이클이 일어닌	<u></u> 횟수.					
	거짓 = 펌크	프 자동 세정 즉시 정지								
	참 = 펌프	자동 세정 즉시 시동								
A.42.4	1717	세정 정방향 주파수	45.00	Hz	0.00	50.00				
	자동 세척	사이클의 정방향 주파수.								
A.42.5	1718	세정 정방향 시간	2.00	초	0.00	320.00				
	자동 세정	사이클의 정방향 주파수에 대한 작동	시간. 세정 사이클 시	시간을 설정할	날 수 있습니	다.				
A.42.6	1719	세정 역방향 주파수	45.00	Hz	0.00	50.00				
	자동 세정	사이클의 역방향 주파수. 세척 사이클	· 동안 주파수를 설정	할 수 있습니	다.					
A.42.7	1720	세정 역방향 시간	0.00	초	0.00	320.00				
	자동 세정	사이클의 역방향 주파수에 대한 작동	시간. 세정 사이클 시	시간을 설정할	날 수 있습니	다.				
A.42.8	1721	세정 가속 시간	0.10	초	0.10	300.00				
	자동 세정여	이 활성화될 때 모터 가속 시간. 자동	세정 기능에 대한 가	속 램프를 설	정할 수 있;					
A.42.9	1722	세척 감속 시간	0.10	초	0.10	300.00				
	자동 세정여	이 활성화될 때 모터 감속 시간. 자동	세정 기능에 대한 감	속 램프를 설	정할 수 있					

90. 표: 펌프 자동 세정 하위 메뉴 항목

A.43 - 충압 펌프 및 시동 펌프 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대				
A.43.1	1674	충압 기능	미사용 (0)	-	0	2				
	- 미사용	(0)								
	- PID 슬립	십 활성화 (1) = 충압 펌프는 주	펌프의 PID 슬립이 활성	성화 될 때 지€	속적으로 작동	합니다.				
	충압 펌프는 주펌프가 슬립 모드에서 깨어날 때 정지합니다.									
	- PID 슬립 레벨 (2) = 충압 펌프는 주펌프의 PID 슬립이 활성화 될 때 선정의된 PID 피드백 레벨에서									
	시동합니	니다. 충압 펌프는 주펌프가 슬	립 모드에서 깨어나거니	∤ 선정의된 ₽I	D 피드백 레႞	벨에서				
	정지합니	- 다.								
A.43.2	1675	충압 시동 레벨	0.00	%	0.00	100.00				
	충압 펌프는	PID 슬립이 활성화되고 PID I	피드백 신호가 해당 파리	나미터로 설정	된 레벨 이하	가 될 때				
	시동합니다.	해당 파라미터는 <i>충압 기능</i> =	<i>PID 슬립 레벨</i> (2)인 경	<mark>우에만</mark> 사용됩	립니다.					
A.43.3	1676	충압 정지 레벨	0.00	%	0.00	100.00				
	충압 펌프는	PID 슬립이 활성화되고 PID I	피드백 신호가 해당 파리	나미터로 설정	된 레벨 이상(기 될 때,				
	또는 PID 컨.	트롤러가 슬립 모드에서 깨어놓	날 때 정지합니다. 이 파	라미터는 <i>충입</i>	않 기능 = PID) <i>슬립</i>				
	<i>레벨</i> (2)인 경	우에만 이용됩니다.								
A.43.10	1677	시동 기능	비활성화 (0)	-	0	1				
	디지털 출력	과 더불어 외부 시동 펌프 제이	너를 활성화합니다. 먼저	시동 펌프 제	어를 디지털					
	출력값으로	설정해야 합니다.								
	비활성화 (0)	1								
	활성화 (1)									
A.43.11	1678	시동 시간	3.00	초	0.00	320.00				
	이 파라미터	값은 주펌프 시동 전 시동 펌	프가 몇 초 동안 시동해	야 하는지 알려	려 줍니다.					
	주펌프 시동	전 시동 펌프가 시동하는 시간	난을 제공합니다.							

91. 표: 충압 펌프 및 시동 펌프 하위 메뉴 항목

A.50 - 외부 옵션 설정 (사인 필터) 하위 메뉴

IX	ID	이름		기본값		단위		최소		최대	
A.50.1	3070	팬 수명	0		시건	<u>'</u> }	0		가는	Ħ	
A.50.2	3071	팬 수명 알람 한계	가	<u><u></u><u></u><u></u></u>	시건	<u>'</u> }	0		가는	Ħ	
A.50.3	3072	팬 수명 리셋		동작 없음 (0)		-		0		1	
	동작 없음	+ (0)									
	리셋 (1)										
A.50.11	3074	사인 필터		비활성화 (0)		-		0		1	
	비활성화	(0)									
	활성화 (1)									

92. 표: 외부 옵션 설정 (사인 필터) 하위 메뉴 항목

A.51 - 간격 1 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대			
A.51.1	3039	켜짐 시간 1 시간	0	시	0	23			
A.51.2	3040	켜짐 시간 1 분	0	분	0	59			
A.51.3	3041	켜짐 시간 1 초	0	초	0	59			
	켜짐 시간	켜짐 시간							
A.51.4	3042	꺼짐 시간 1 시간	0	시	0	23			
A.51.5	3043	꺼짐 시간 1 분	0	분	0	59			
A.51.6	3044	꺼짐 시간 1 초	0	초	0	59			
	꺼짐 시간								
A.51.7	1466	일	0	-	0	63			
	기능이 활성	성화 될 때의 요일. 체크박스 선택.							
	B0 = 일요Ş	일 B1 = 월요일	B2 = 화요일		B3 = 수요율	길			
	B4 = 목요Ş	일 B5 = 금요일	B6 = 토요일						
A.51.8	1468	채널에 할당	0	-	0	7			
	시간 채널 ·	선택. 체크박스 선택.							
	B0 = 시간	채널 1 B1 = 시간 채널 2	B2 = 시간 채	널 3					

93. 표: 간격 1 하위 메뉴 항목

A.52 -간격 2 하위 메뉴

IX	ID	이름		기본값	단위	최소	최대
A.52.1	3045	켜짐 시간 2	시간	0	시	0	23
A.52.2	3046	켜짐 시간 2	분	0	분	0	59
A.52.3	3047	켜짐 시간 2	켜짐 시간 2 초		초	0	59
	켜짐 시간	켜짐 시간					
A.52.4	3048	꺼짐 시간 2	H짐 시간 2 시간		시	0	23
A.52.5	3049	꺼짐 시간 2	꺼짐 시간 2 분		분	0	59
A.52.6	3050	꺼짐 시간 2	초	0	초	0	59
	꺼짐 시간						
A.52.7	1471	일		0	-	0	63
	기능이 활성화 될 때의 요일. 체크박스 선택.						
	B0 = 일요§	일	B1 = 월요일	B2 = 화요일		B3 = 수요;	일
	B4 = 목요을	일	B5 = 금요일	B6 = 토요일			
A.52.8	1473	채널에 할당		0	-	0	7
	시간 채널 ~	선택. 체크박스	. 선택.				
	B0 = 시간	채널 1	B1 = 시간 채널 2	B2 = 시간 치	널 3		

94. 표: 간격 2 하위 메뉴 항목

A.53 -간격 3 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대	
A.53.1	3051	켜짐 시간 3 시간	0	시	0	23	
A.53.2	3052	켜짐 시간 3 분	0	분	0	59	
A.53.3	3053	켜짐 시간 3 초	0	초	0	59	
	켜짐 시간	켜짐 시간					
A.53.4	3054	꺼짐 시간 3 시간	0	시	0	23	
A.53.5	3055	꺼짐 시간 3 분	0	분	0	59	
A.53.6	3056	꺼짐 시간 3 초	0	초	0	59	
	꺼짐 시간						
A.53.7	1476	일	0	-	0	63	
	기능이 활성화 될 때의 요일. 체크박스 선택.						
	B0 = 일요Ş	일 B1 = 월요일	B2 = 화요일		B3 = 수요율	2	
	B4 = 목요Ş	일 B5 = 금요일	B6 = 토요일				
A.53.8	1478	채널에 할당	0	-	0	7	
	시간 채널 ·	선택. 체크박스 선택.					
	B0 = 시간	채널 1 B1 = 시간 채널 2	B2 = 시간 채	널 3			

95. 표: 간격 3 하위 메뉴 항목

A.54 -간격 4 하위 메뉴

IX	ID	이름		기본값	단위	최소	최대
A.54.1	3057	켜짐 시간 4	시간	0	시	0	23
A.54.2	3058	켜짐 시간 4	분	0	분	0	59
A.54.3	3059	켜짐 시간 4	켜짐 시간 4 초		초	0	59
	켜짐 시간	켜짐 시간					
A.54.4	3060	꺼짐 시간 4	거짐 시간 4 시간		시	0	23
A.54.5	3061	꺼짐 시간 4	분	0	분	0	59
A.54.6	3062	꺼짐 시간 4	초	0	초	0	59
	꺼짐 시간						
A.54.7	1481	일		0	-	0	63
	기능이 활성화 될 때의 요일. 체크박스 선택.						
	B0 = 일요Ş	일	B1 = 월요일	B2 = 화요일		B3 = 수요열	
	B4 = 목요Ş	일	B5 = 금요일	B6 = 토요일			
A.54.8	1483 채널에 할당		0	-	0	7	
	시간 채널 선택. 체크박스 선택.						
	B0 = 시간	채널 1	B1 = 시간 채널 2	B2 = 시간 채	널 3		

96. 표: 간격 4 하위 메뉴 항목

A.55 - 간격 5 하위 메뉴

IV	ID			기보가		치스	ᅕᅵᄃᄡ
17		_ 이금		기군없	근귀	्रयाच्य	_ 뙤 네
A.55.1	3063	켜짐 시간 5	시간	0	시	0	23
A.55.2	3064	켜짐 시간 5	분	0	분	0	59
A.55.3	3065	켜짐 시간 5 초		0	초	0	59
	켜짐 시간	켜짐 시간					
A.55.4	3066	꺼짐 시간 5	· 점 시간 5 시간 (시	0	23
A.55.5	3067	꺼짐 시간 5	꺼짐 시간 5 분		분	0	59
A.55.6	3068	꺼짐 시간 5	꺼짐 시간 5 초		초	0	59
	꺼짐 시간						
A.55.7	1486	일		0	-	0	63
	기능이 활성화 될 때의 요일. 체크박스 선택.						
	B0 = 일요Ş	길	B1 = 월요일	B2 = 화요일		B3 = 수요율	길
	B4 = 목요Ş	길	B5 = 금요일	B6 = 토요일			
A.55.8	1488	채널에 할당		0	-	0	7
	시간 채널 ·	선택. 체크박스	선택.				
	B0 = 시간	채널 1	B1 = 시간 채널 2	B2 = 시간 채	널 3		

97. 표: 간격 5 하위 메뉴 항목

A.56 - 타이머 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대			
A.56.1	1489	타이머 1 지속시간	0	초	0	72000			
	DI로 활성화될 때 타이머가 작동하는 시간.								
A.56.2	447	타이머 1	DIN_Port01 (9) = 거짓	-	0	10			
	상승 에지 = 타이머 1이 시동합니다.								
	선택 가능한 열거값은 모든 디지털 입력에 대해 동일합니다.								
A.56.3	1490	타이머 1 채널에 할당	0	-	0	7			
	시간 채널	시간 채널 선택. 체크박스 선택.							
	B0 = 시간	채널 1 B1 = 시간 채널 2	B2 = 시간 채널	3					
A.56.4	1491	타이머 2 지속시간	0	초	0	72000			
	DI로 활성	화될 때 타이머가 작동하는 시간.	1						
A.56.5	448	타이머 2	DIN_Port01 (9) =	-	0	10			
			거짓						
	상승 에지 = 타이머 2가 시동합니다.								
	선택 가능한 열거값은 모든 디지털 입력에 대해 동일합니다.								
A.56.6	1492	타이머 2 채널에 할당	0	-	0	7			
	시간 채널 선택. 체크박스 선택.								
	B0 = 시간	B0 = 시간 채널 1 B1 = 시간 채널 2 B2 = 시간 채널 3							
A.56.7	1493	타이머 3 지속시간	0	초	0	72000			
	DI로 활성화될 때 타이머가 작동하는 시간.								
A.56.8	449	타이머 3	DIN_Port01 (9) =	-	0	10			
			거짓						
	상승 에지	= 타이머 3이 시동합니다.							
	선택 가능	한 열거값은 모든 디지털 입력에 대해	해 동일합니다.						
A.56.9	1494	타이머 3 채널에 할당	0	-	0	7			
	시간 채널	선택. 체크박스 선택.							
	B0 = 시간	채널 1 B1 = 시간 채널 2	B2 = 시간 채널	3					

98. 표: 타이머 하위 메뉴 항목

A.93 - 추이 곡선 파라미터 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대		
A.93.1	2368	샘플링 간격	100	ms	100	432000		
	샘플링 간격	을 설정합니다.						
A.93.2	2369	채널 1 분	-1000	-	-	1000		
	기본적으로	스케일 조정에 사용됩니다.	조정 작업이 필요할 수	있습니다.				
A.93.3	2370	채널 1 최대	1000	-	-1000	-		
	기본적으로 스케일 조정에 사용됩니다. 조정 작업이 필요할 수 있습니다.							
A.93.4	2371	채널 2 분	-1000	-	-	1000		
	기본적으로 스케일 조정에 사용됩니다. 조정 작업이 필요할 수 있습니다.							
A.93.5	2372	채널 2 최대	1000	-	-1000	-		
	기본적으로 스케일 조정에 사용됩니다. 조정 작업이 필요할 수 있습니다.							
A.93.6	2373	자동 스케일 조정	0	-	0	1		
	이 파라미터	값이 1인 경우, 신호 스케일	l은 최소 및 최대값 사	이에서 자동으	으로 조정됩니다	ŀ.		

99. 표: 추이 곡선 파라미터 하위 메뉴 항목

A.96 - 유지보수 & 카운터 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대				
A.96.1	1104	카운터 1 모드	미사용 (0)	-	0	2				
	유지보수 :	카운터에는 시간 또는 회전*1000으	로 나타내는 2가지 모드가 있습	늘니다.						
	미사용 (0)	시간 (1)	회전	(2)						
A.96.2	1105	카운터 1 알람 한계	0	h/kRev	0	-				
	유지보수 '	알람이 카운터 1을 표시하는 경우.	카운터 값이 한계보다 큰 경우,	알람이 표시	됩니다.					
	0 = 미사용	2								
A.96.3	1106	카운터 1 고장 한계	0	h/kRev	0	-				
	유지보수 .	고장이 카운터 1을 표시하는 경우.	카운터 값이 한계보다 큰 경우,	고장이 표시	됩니다.					
	0 = 미사용	2								
A.96.4	1107	카운터 1 리셋	동작 없음 (0)	-	0	1				
	유지보수 🗄	유지보수 카운터 1을 리셋하기 위해 활성화합니다. 유지보수가 완료되면 이 파라마터로 카운터를								
	리셋합니더	ł.								
	동작 없음((0) ī	리셋 (1)							
A.96.5	490	유지보수 카운터 리셋	DIN_Port01 (9) = 거짓	-	0	10				
	참 = 0으로	르 유지보수 카운터 리셋								
	유지보수기	Ⅰ 완료되면 디지털 입력 또는 파라 ^Ⅰ	가터로 카운터를 리셋합니다.							
	선택 가능	한 열거값은 모든 디지털 입력에 대	해 동일합니다.							
A.96.6	3186	에너지 트립 카운터 초기화	동작 없음 (0)	-	-	-				
A.96.7	3187	동작 시간 트립 카운터 초기화	동작 없음 (0)	-	-	-				

100. 표: 유지보수 및 카운터 하위 메뉴 항목

A.97 - 사용자 설정 (언어, 인버터 이름, 사용자 레벨, 사용자 비밀번호) 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대	
A.97.1	802	언어 선택	가변	-	가변	가변	
	모든 언어 패키지별로 선택 사항이 다릅니다.						
A.97.2	3081	인버터 이름					
	인버터 이름	을 선택합니다.					
A.97.3	1194	사용자 레벨	정상 (1)	-	1	3	
	정상 (1). =	모든 메뉴를 주 메뉴에서 볼 수	· 있습니다.				
	모니터링 (2) = 모니터링 및 사용자 레벨 [베뉴만 주 메뉴에서 🗄	볼 수 있습니[구.		
	즐겨찾기 (3). = 즐겨찾기 및 사용자 레벨	메뉴만 주 메뉴에서	볼 수 있습니	다.		
A.97.4	2362	접속 코드	0	-	0	99999	
	예를 들어, 정상에서 모니터링으로 가기 전 값을 0과 다르게 설정한 경우, 정상으로 되돌아 갈 때						
	접근 코드를	- 제공해야 합니다. 이렇게 함으	로써 미승인 인물이	제어 패널에	서 파라미터를	변경하는	
	일을 방지힐	수 있습니다.					

101. 표: 사용자 설정 (언어, 인버터 이름, 사용자 레벨, 사용자 비밀번호) 하위 메뉴 항목

A.98 - 응용 설정 (비밀번호, 기능 키 설정) 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대			
A.98.1	1806	비밀번호	0		0	9999			
	관리자 비밀	번호.							
A98.2	1197	C°/F° 선택	°C (0)	-	0	1			
	설정된 단위로 모든 온도 표시됩니다.								
	섭씨 °C (0)	섭씨 °C (0)							
A98.3	1198	kW/hp 선택	kW (0)	-	0	1			
	설정된 단위로 모든 출력 표시됩니다.								
	kW (0)								
A.98.4	1196	멀티 모니터 뷰	3x2 섹션 (1)	-	0	2			
	멀티 모니터 뷰에서 섹션으로 나눈 제어 패널 디스플레이 분할.								
	0 = 2x2 섹션	1 = 3x2	섹션	2 = 3x3 선	년				
A.98.5	1195	기능 버튼 구성	B0/B1/B2/B3 가능	-	0	15			
	이 파라미터.	로 설정한 값은 키패드에서 기능	버튼을 누를 때 이용 가	능합니다.					
	B0 = 로컬 /	원격 B1 = 제어 페이지	B2 = 변경 방향	B	3 = 빠른 편	집			

102. 표: 애플리케이션 설정 (비밀번호, 기능 키 설정) 하위 메뉴 항목

A.99 - 파라미터 관리 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대			
A.99.1	831	기본값을 복구합니다.	동작 없음 (0)	-	0	1			
	동작 없음 ((0)							
	리셋(1)=	기본 파라미터 값을 복구하고 스타!	트업 마법사를 시작합	니다.					
A.99.2	3075	키패드에 저장합니다.	저장 안함 (0)	-	0	1			
	저장 안함 ((0)							
	저장 (1) =	파라미터 값을 다른 인버터에 복사	등을 하기 위해 제어	패널로 저장협	합니다.				
A.99.3	3076	키패드에서 복구합니다.	동작 없음 (0)	-	0	1			
	동작 없음 ((0)							
	복구 (1) =	제어 패널에서 인버터로 파라미터 경	값을 로딩합니다.						
A.99.4	3077	설정1에 저장합니다.	저장 안함 (0)	-	0	1			
	저장 안함 ((0)							
	저장 (1) =	맞춤 파라미터 설정을 유지합니다 (즉, 애플리케이션에 또	드함된 모든 피	다라미터).				
A.99.5	3078	설정1에서 복구합니다.	동작 없음 (0)	-	0	1			
	동작 없음 (0)								
	복구(1)=	맞춤 파라미터 설정을 인버터에 로	당합니다.						
A.99.6	3079	설정2에 저장합니다.	저장 안함 (0)	-	0	1			
	저장 안함 (저장 안함 (0)							
	저장 (1) =	또 다른 맞춤 파라미터 설정을 유지	합니다 (즉, 애플리케	이션에 포함된	<u> 모든 파라</u>	미터).			
A.99.7	3080	설정2에서 복구합니다.	동작 없음 (0)	-	0	1			
	동작 없음 ((0)							
	복구 (2) =	맞춤 파라미터 설정2를 인버터에 로	당합니다.						
A.99.8	2496	활성 vs. 키패드 파라미터	동작 없음 (0)	-	0	1			
		설정을 비교합니다.							
A.99.9	2495	활성 vs. 기본값을 비교합니다.	동작 없음 (0)	-	0	1			
		파라미터 설정							
A.99.10	2493	활성 vs. 설정 1을 비교합니다.	동작 없음 (0)	-	0	1			
		파라미터 설정							
A.99.11	2494	활성 vs. 설정 2를 비교합니다.	동작 없음 (0)	-	0	1			
		파라미터 설정							
A.99.12	3017	설정 1 vs. 설정 2를 비교합니다.	동작 없음 (0)	-	0	1			
		파라미터 설정							
A.99.13	3018	설정 1 vs. 키패드를 비교합니다.	동작 없음 (0)	-	0	1			
		파라미터 설정			-				
A.99.14	3019	실정 2 vs. 키패드를 비교합니다.	농작 없음 (0)	-	0	1			
4 00 15	2020	바라미터 설정				1			
A.99.15	3020	기본값 VS. 키패드를 비교압니다.	농삭 없음 (0) 	-	0	1			
	2002	바라미터 실정				1			
A.99.16	3082	기본값 VS. 실정 1을 비교합니다.	공작 없음 (0)	-	0	L			
A 00 17	2082	파다미더 열장			0	1			
A.99.17	3083	기논값 VS. 실상 2늘 비교압니다.	공작 없음 (U)	-	0	1			
		파라미터 실성	7 (1)						
	공작 낎음 ((U) H	교 (土)						

103. 표: 파라미터 관리 하위 메뉴 항목

그룹 C - 제어 터미널 및 옵션 그룹

C.1 - 키패드 설정 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대			
C.1.1	3098	타임아웃 시간	0	분	0	60			
	통과 후 디스플레이가 기본 페이지로 되돌아 가는 시간.								
	0 = 미사용	= 미사용							
C.1.2	3099	기본 페이지	최근 페이지 (0)	-	0	4			
	인버터의	전원이 켜졌을 때 또는 <i>티</i>	<i>사임아웃 시간</i> 이 경과했	을 때 키패드기	가 나타내는 i	페이지.			
	최근 페이지 (0) 사용자 정의 (1) 주 메뉴 (2)								
	제어 페이	지 (3) 멀 태	티 모니터 (4)						
C.1.3	3100	메뉴 인덱스							
	사용자 정의 기본 페이지를 정의합니다.								
C.1.4	3101	대비	50	%	30	70			
	디스플레이 대비를 설정합니다.								
C.1.5	3102	백라이트 시간	5	분	0	60			
	디스플레(디스플레이 백라이트가 꺼진 후 시간을 설정합니다. 값을 0으로 설정하는 경우, 백라이트는							
	항상 켜짐	상태입니다.							
	0 = 백라(이트 상시 켜짐							

104. 표: 키패드 설정 (+ 단위, 멀티 모니터 분할 및 항목 선택, 추이 보기, 마법사 콜) 하위 메뉴 항목

C.2 - 디지털 입력 로직 하위 메뉴

IX	ID	이름	기본값		단위	최소	최대	
C.2.1	300	IO A 시동 정지 로직	시동 정지 로직	2 (2)	-	0	4	
C.2.2	363	IO B 시동 정지 로직	시동 정지 로직	2 (2)	-	0	4	
	시동 정	지 로직 0 (0)		시동 정	이 로직 3	(3)		
	- 제(거 신호 1 = 정방향 (상태	제어)	- 제(거 신호 1 =	= 시동 (상	태 제어)	
	- 제(거 신호 2 = 역방향 (상태	제어)	- 제어 신호 2 = 방향 (상태 제어)				
	- 제(거 신호 3 = 미할당			o 거짓	= 정방향		
				o 참 = 역방향				
	시동 정지 로직 1 (1)				거 신호 3 =	= 미할당		
	- 제(거 신호 1 = 정방향 (상승	에지 제어)					
	- 제(거 신호 2 = 역정지 (상태	제어)	시동 정	이 로직 4	(4)		
	- 제(거 신호 3 = 역방향 (상승	에지 제어)	- 제(거 신호 1 =	= 시동 (상	승 에지 제어)	
				- 제(어 신호 2 =	= 방향 (상	태 제어)	
	시동 정	지 로직 2 (2)			o 거짓	= 정방향		
	- 제(거 신호 1 = 정방향 (상승	에지 제어)		0 참 =	역방향		
	- 제(거 신호 2 = 역방향 (상승	에지 제어)	- 제(어 신호 3 =	= 미할당		
	- 제(어 신호 3 = 미할당						
C.2.3	889	필드버스 시동 로직	상승 에지 필요	(0)	-	0	1	
	상승 어	지 필요 (0)	상태 (1)					

105. 표: 디지털 입력 로직 하위 메뉴 항목

C.3 - 디지털 입력 설정 (DI 기능) 하위 메뉴

IX	ID	이름	기본값		단위	최소	최대		
C.3.1	403	제어 신호 1 A	DIN_PortA	1 (1)	-	0	10		
	제어 위치가 IO A인 경우 제어 신호 1								
	비활성화 (0) DIN_P	ortA1 (1)	(1) DIN_PortA2 (2)					
	DIN_PortA	.3 (3) DIN_P	ortA4 (4)	Ľ	DIN_PortA5	5 (5)			
	DIN_PortA	.6 (6) DIN_P	ortA7 (7)	Ľ	DIN_PortA8	8 (8)			
	DIN_Port0	1 (9) = 상수 거짓 DIN_P	ort02 (10) = 상수 ?	챀					
C.3.2	404	제어 신호 2 A	DIN_PortA	2 (2)	-	0	10		
	제어 위치:	가 IO A인 경우 제어 신호 2.							
	선택 가능적	한 열거값은 모든 디지털 입	력에 대해 동일합니	다.					
C.3.3	434	제어 신호 3 A	DIN_Port0	1 (9)	-	0	10		
			= 거짓						
	제어 위치:	가 IO A인 경우 제어 신호 3.							
	선택 가능적	한 열거값은 모든 디지털 입	력에 대해 동일합니	다.					
C.3.4	423	제어 신호 1 B	DIN_Port0	1 (9)	-	0	10		
			= 거짓						
	제어 위치가 IO B인 경우 제어 신호 1.								
	선택 가능적	한 열거값은 모든 디지털 입	력에 대해 동일합니	다.					
C.3.5	424	제어 신호 2 B	DIN_Port0	1 (9)	-	0	10		
			= 거짓						
	제어 위치가 IO B인 경우 제어 신호 2.								
	선택 가능적	한 열거값은 모든 디지털 입	력에 대해 동일합니	다.					
C.3.6	435	제어 신호 3 B	DIN_Port03	1 (9)	-	0	10		
			= 거짓						
	제어 위치가 IO B인 경우 제어 신호 3.								
	선택 가능적	한 열거값은 모든 디지털 입	력에 대해 동일합니	다.		-			
C.3.7	425	IO B 강제 제어	DIN_Port0	1 (9)	-	0	10		
			= 거짓						
	참 = 제어 위치를 IO B로 지정.								
	선택 가능적	한 열거값은 모든 디지털 입	력에 대해 농일합니				10		
C.3.8	343	IO B 기순 힘	DIN_Port0	1 (9)	-	0	10		
			= 거싯						
	참 = 기준을 IO B로 지정.								
<u> </u>	신택 가등(411	안 열거값은 모든 니지털 입	럭에 내애 동일압니	나.		0	10		
C.3.9	411	필드버스 강제 세어		1 (9)	-	0	10		
	+ + +	이쉬고 피드네 노크 지권	= 거짓						
	삼 = 세어	위시늘 끨느버스도 시성. 헤어고가요 모든 모자란 이	러에 대체 드이하다						
C 2 10	신택 가등(410	간 열거값은 모든 니시털 입	릭에 내애 동일압니	나. 1 (0)		0	10		
C.3.10.	410	기패드 강제 세어		T (9)	-	0	10		
			= 거싯						

IX	ID	이름	기본값	단위	최소	최대		
	참 = 제어	위치를 키패드로 지정.						
	선택 가능	한 열거값은 모든 디지털 입력에 대	해 동일합니다.					
C.3.11	405	외부 고장 폐쇄	DIN_PortA3 (3)	-	0	10		
	참 = 외부	고장이 활성화되었습니다.						
	선택 가능	한 열거값은 모든 디지털 입력에 대	해 동일합니다.					
C.3.12	406	외부 고장 개방	DIN_Port02	-	0	10		
			(10) = 참					
	거짓 = 외·	부 고장이 활성화되었습니다.						
	선택 가능	한 열거값은 모든 디지털 입력에 대	해 동일합니다.					
C.3.13	414	고장 리셋 폐쇄	DIN_PortA6 (6)	-	0	10		
	참 = 모든	활성화 고장을 리셋합니다.						
	선택 가능	한 열거값은 모든 디지털 입력에 대	해 동일합니다.					
C.3.14	213	고장 리셋 개방	DIN_Port01 (9)	-	0	10		
			= 거짓					
	거짓 = 모든 활성화 고장을 리셋합니다.							
	선택 가능	한 열거값은 모든 디지털 입력에 대	해 동일합니다.	1				
C.3.15	407	실행 활성화	DIN_Port02	-	0	10		
			(10) = 참					
	참 = 인버터를 대기 상태로 설정합니다.							
	선택 가능	한 열거값은 모든 디지털 입력에 대	해 동일합니다.					
C.3.16	1041	인터락 1 실행	DIN_Port02	-	0	10		
			(10) = 참					
	참 = 시동	허용.						
	선택 가능	한 열거값은 모든 디지털 입력에 대	해 동일합니다.					
C.3.17	1042	인터락 2 실행	DIN_Port02	-	0	10		
			(10) = 참					
	참 = 시동	허용.						
	선택 가능	한 열거값은 모는 디지털 입력에 대	해 농일합니다.			10		
C.3.18	1044	모터 예열 켜심	DIN_Port01 (9)	-	0	10		
			= 거짓					
	옵션 모터 에열 제어 소스. 할당된 경우, 잠 = 모터 예열 허용.							
6.2.10	전택 가등·	안 열거값은 모든 디지털 입덕에 내	애 동일압니다.		0	10		
C.3.19	408	댐프 Z 신택		-	0	10		
		표 1 혀대 귀소 나가 1 미 가소 나?	= 거짓 1이 가스 미 기스		거저하니			
	· 거짓 = 넴: 차 - 래고	프 I 영대, 가족 시간 I 및 감독 시간 그 현대 고소 나가 그 미 가소 나가 ?	፲ 1이 감독 및 가족)기 가소 미 기소 조	궁 가중글 기도의 계	결성압니 제하니다	∟ <u></u> ŗ.		
	심 - 멤프	김 영대, 가죽 시간 김 곳 감축 시간 4 최 여고가의 마트 디피터 이려에 대	- / 김국 곳 / 국 궁 체 도이하니다	시오크 건	경압니다			
C 3 20	인팩 기궁 /15	한 글기파는 또는 디자털 접덕에 내 기소-가소 그지	에 ㅎㄹ입니니. DIN Port01 (0)		0	10		
0.5.20	-11J		= 거지			10		
	차 = 가소	[
	삼 = 가폭	또는 감독이 물가궁압니다.						

IX	ID	이름	기본값	단위	최소	최대			
	선택 가능적	한 열거값은 모든 디지털 입력에 디	배해 동일합니다.						
C.3.21	419	다단속 주파수 선택 A	DIN_PortA4 (4)	-	0	10			
	옵션 다단속 주파수 선택 소스.								
	선택 가능적	한 열거값은 모든 디지털 입력에 더	배해 동일합니다.						
C.3.22	420	다단속 주파수 선택 B	DIN_PortA5 (5)	-	0	10			
	옵션 다단속 주파수 선택 소스.								
	선택 가능적	한 열거값은 모든 디지털 입력에 디	배해 동일합니다.						
C.3.23	421	다단속 주파수 선택 C	DIN_Port01 (9)	-	0	10			
			= 거짓						
	옵션 다단=	속 주파수 선택 소스.							
	선택 가능적	한 열거값은 모든 디지털 입력에 더	ㅐ해 동일합니다. □	1					
C.3.24	418	모터 전위차계 상승	DIN_Port01 (9)	-	0	10			
			= 거짓						
	참 = 모터 전위차계 기준이 증가합니다.								
	선택 가능적	한 열거값은 모든 디지털 입력에 더	내해 동일합니다.						
C.3.25	417	모터 전위차계 하강	DIN_Port01 (9)	-	0	10			
	부 모든 권이컨케 기존이 가수하니요.								
	삼 = 모터 전위자계 기꾼이 삼소압니다. 서태 가능하 여기가요 마도 디자터 이렇에 대해 도입하니다.								
C 2 26	신택 가궁 1212	간 일기없는 또는 디지털 합덕에 나 그소 저지 하셔하	미에 중걸입니다.		0	10			
C.J.20	1213	비국 경지 필경와	UIN_FOIL02 (10) - 차	-	0	10			
	거지 = 근:	 소 전지 화선하							
	시탠 가능적	ㅋ 증시 물증되 하 역거값은 모든 디지턱 인련에 D	배해 동익한니다						
C.3.27	447	타이머 1	DIN Port01 (9)	-	0	10			
			= 거짓						
	상승 에지 = 타이머 1이 시동합니다.								
	선택 가능한 열거값은 모든 디지털 입력에 대해 동일합니다.								
C.3.28	448	타이머 2	DIN_Port01 (9)	-	0	10			
			= 거짓						
	상승 에지 = 타이머 2가 시동합니다.								
	선택 가능적	한 열거값은 모든 디지털 입력에 디	배해 동일합니다.						
C.3.29	449	타이머 3	DIN_Port01 (9)	-	0	10			
			= 거짓						
	상승 에지	= 타이머 3이 시동합니다.							
	선택 가능적	한 열거값은 모든 디지털 입력에 디	배해 동일합니다.	1					
C.3.30	1046	PID 1 설정값 부스트	DIN_Port01 (9)	-	0	10			
			= 거짓						
	참 = PID (설정값 부스트 활성화.							
	선택 가능적	한 열거값은 모든 디지털 입력에 더	H해 동일합니다.	I	I				
C.3.31	1047	PID 1 선택 설정값	DIN_Port01 (9)	-	0	10			

IX	ID	이름	기본값	단위	최소	최대			
			= 거짓						
	거짓 = PID 설정값 1이 PID 컨트롤러에 대한 설정값 역할을 합니다.								
	참 = PID 설정값 2가 PID 컨트롤러에 대한 설정값 역할을 합니다.								
	선택 가능	한 열거값은 모든 디지털 입력에 대	해 동일합니다.						
C.3.32	1049	외부 PID 시동 신호	DIN_Port02	-	0	10			
			(10) = 참						
	거짓 = 정	지 모드 시 외부 PID 컨트롤러							
	참 = 외부	PID 컨트롤러 조절.							
	선택 가능	한 열거값은 모든 디지털 입력에 대	해 동일합니다.						
C.3.33	1048	외부 PID 선택 설정값	DIN_Port01 (9)	-	0	10			
			= 거짓						
	거짓 = PII) 설정값 1이 외부 PID 컨트롤러에	대한 설정값 역할을	합니다.					
	참 = PID 1	설정값 2가 외부 PID 컨트롤러에 다	한 설정값 역할을 합	납니다.					
	선택 가능적	한 열거값은 모든 디지털 입력에 대	해 동일합니다.			1			
C.3.34	426	모터 1 인터락	DIN_Port01 (9)	-	0	10			
			= 거짓						
	참 = 멀티 펌프 제어 프로세스에서 제외된 모터 1								
	선택 가능	한 열거값은 모든 디지털 입력에 대	해 동일합니다.						
C.3.35	427	모터 2 인터락	DIN_Port01 (9)	-	0	10			
			= 거짓						
	삼 = 딸티 펌프 세어 프로세스에서 세외된 모터 2								
	선택 가능	한 열거값은 모는 디지털 입력에 대	해 농일합니다.		0	10			
C.3.36	428	모터 3 인터락	DIN_Port01 (9)	-	0	10			
			= 거짓						
	삼 = 월타 펌프 세어 프로제스에서 세외된 모터 3 서태 그는히 여기간은 마도 타파턴 이러에 대해 도이하니다.								
C 2 27	신텍 가등	한 열거값은 모든 디지털 입덕에 내	애 동일압니다.		0	10			
C.3.37	429	모더 4 인더덕		-	0	10			
	차고머디		<u> = 거欠</u> EL 4						
	섬 = 펄디 펌프 제어 프로제스에서 제외된 모터 4 서태 가능히 여기간은 마트 디피터 이려에 대해 도이하니다								
C 3 38	신국 기종 130	인 걸기없는 또는 디지글 납락에 네 ㅁᇊ 5 이더라		_	0	10			
C.J.J0	-50	그녀 기간비극	- 거지		0	10			
	차 - 먼티	 	<u> - 기자</u> 타 5						
	ᆷ ᅳ ᆯ디 서택 가능?	삼 = 걸다 펌프 세어 프도제스에서 제외된 모터 5 서태 그는혀 여겨가요 마도 다파턴 이려에 대해 도이하니다.							
C 3 39	486	모터 6 인터란	DIN Port01 (9)						
0.5.55	100		= 거짓						
	 찬 = 먹티	 퍽ㅍ 제어 ㅍㄹ세스에서 제이되 모	<u> </u>						
	ㅁ - ᆯ딕 선택 가늦?	히는 제학 프로젝트에서 제외한 또 한 엽거값은 모든 디지털 인렬에 대	·-, · 해 동일한니다						
C.3.40	490	유지보수 카운터 리셋	DIN Port01 (9)	-	0	10			
			= 거짓						

IX	ID	이름	기본값	단위	최소	최대				
	참 = 0으로	² 유지보수 카운터 리셋								
	유지보수기	ㅏ완료되면 디지털 입력 또는 파라띠	마터로 카운터를 리셨	넷합니다.						
	선택 가능점	한 열거값은 모든 디지털 입력에 대	해 동일합니다.							
C.3.41	532	DI 조깅 활성화	DIN_Port01 (9)	-	0	10				
			= 거짓							
	참 = DI 제어 조깅 활성화.									
	선택 가능적	선택 가능한 열거값은 모든 디지털 입력에 대해 동일합니다.								
C.3.42	530	조깅 기준 1 활성화	DIN_Port01 (9)	-	0	10				
			= 거짓							
	참 = DI 제	어 조깅 즉시 시동.								
	선택 가능적	한 열거값은 모든 디지털 입력에 대	해 동일합니다.							
C.3.43	531	조깅 기준 2 활성화	DIN_Port01 (9)	-	0	10				
			= 거짓							
	참 = DI 제어 조깅 즉시 시동.									
	선택 가능적	한 열거값은 모든 디지털 입력에 대	해 동일합니다.							
C.3.44	1210	기계식 브레이크 피드백	DIN_Port01 (9)	-	0	10				
			= 거짓							
	선택 가능한 열거값은 모든 디지털 입력에 대해 동일합니다.									
C.3.45	1596	화재 모드 활성화 개방	DIN_Port02	-	0	10				
			(10) = 참							
	거짓 = 화재 모드 활성화									
	선택 가능한 열거값은 모든 디지털 입력에 대해 동일합니다.									
	해당 디지	털 입력 신호 유형은 NC (상시 닫힘)입니다.							
C.3.46	1619	화재 모드 활성화 폐쇄	DIN_Port01 (9)	-	0	10				
			= 거짓							
	참 = 화재 모드 활성화									
	선택 가능한 열거값은 모든 디지털 입력에 대해 동일합니다.									
	해당 디지'	털 입력 신호 유형은 NO (상시 열림)입니다.							
C.3.47	1618	화재 모드 역방향	DIN_Port01 (9)	-	0	10				
			= 거짓							
	거짓 = 화재 모드 활성화 시 정방향 회전									
	참 = 화재	모드 활성화 시 역방향 회전								
	선택 가능한 열거값은 모든 디지털 입력에 대해 동일합니다. 모터가 화재 모드에서 상시 정방향 또는 상시 역방향으로 작동하는 데 필요한 경우, 정확한									
	니시털 입	력을 선택합니다.								
		.+ = 상시 성망양 2 - 사비 여만화								
C 2 49		.< = 성시 역방양 피도 배쳐 합성함			0	10				
C.3.48	1/15	사중 세식 활성와		-	0	10				
			- 72							

IX	ID	이름	기본값	단위	최소	최대			
	거짓 = 펌.	프 자동 세척 즉시 정지							
	참 = 펌프	자동 세척 즉시 시동							
	선택 가능	선택 가능한 열거값은 모든 디지털 입력에 대해 동일합니다.							
C3.49	496	-	0	10					
	= 거짓								
	거짓 = 파라미터 설정 1이 선택되었습니다.								
	참 = 파라미터 설정 1이 선택되었습니다.								
	선택 가능한 열거값은 모든 디지털 입력에 대해 동일합니다.								
C.3.50	15523	사용자 정의 고장 1 활성화	DIN_Port01 (9)	-	0	10			
			= 거짓						
	참 = 사용자 정의 고장 1이 활성화되었습니다.								
	선택 가능한 열거값은 모든 디지털 입력에 대해 동일합니다.								
C.3.51	15524	사용자 정의 고장 2 활성화	DIN_Port01 (9)	-	0	10			
			= 거짓						
	참 = 사용	자 정의 고장 2가 활성화되었습니다	ŀ.						
	선택 가능	한 열거값은 모든 디지털 입력에 대	해 동일합니다.						

106.. 표: 디지털 입력 설정 (DI 기능) 하위 메뉴 항목

C.4 - 아날로그 입력 설정 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대			
C.4.1	377	AIC 신호 선택	AIN_PortA1	-	0	19			
	물리 아날로그 입력 신호 중 하나를 AIC 논리 아날로그 입력 신호로 할당합니다.								
	미선택 (0) AIN_PortA1 (1) AIN_PortA2 (2)								
	AIN_Port01 (10) = 10 % AIN_Port02 (11) = 20 %								
	AIN_Port03 (12) = 30 % AIN_Port04 (13) = 40 %								
	AIN_Port05 (14) = 50 % AIN_Port06 (15) = 60 %								
	AIN_Port	:07 (16) = 70 %	AIN_Port08 (17	7) = 80 %					
	AIN_Port09 (18) = 90 % AIN_Port10 (19) = 100 %								
C.4.2	378	AIC 신호 필터 시간	0.10	초	0.00	300.00			
	논리 아닐	날로그 입력 신호 저주파 통	과 필터 시간 상수.						
C.4.3	379	AIC 신호 범위	0.00	%	0.00	100.00			
	정격값(20mA) 백분율로 나타낸 아날로그 신호 범위의 시동값.								
C.4.4	380	AIC 사용자 지정 최소	0.00	%	-160.00	160.00			
	사용자 지정 범위 최소 설정, 예, 20% = 4-20mA								
C.4.5	381	AIC 사용자 지정 최대	100.00	%	-160.00	160.00			
	사용자 지정 범위 최대 설정.								
C.4.6	387	AIC 신호 변환	정상 (0)	-	0	1			
	정상 (0)								
	변환 (1)								
C.4.7	388	AIV 신호 선택	AIN_PortA2	-	0	19			
	물리 아닐	물리 아날로그 입력 신호 중 하나를 AIV 논리 아날로그 입력 신호로 할당합니다.							
	미선택 (()) AIN_PortA1	. (1) AIN_PortA2 (2)						
	AIN_Port01 (10) = 10 % AIN_Port02 (11) = 20 %								
	AIN_Port03 (12) = 30 % AIN_Port04 (13) = 40 %								
	AIN_Port05 (14) = 50 % AIN_Port06 (15) = 60 %								
	AIN_Port07 (16) = 70 % AIN_Port08 (17) = 80 %								
	AIN_Port	09 (18) = 90 %	AIN_Port10 (19) = 100 %					
C.4.8	389	AIV 신호 필터 시간	0.10	초	0.00	300.00			
	논리 아닐	날로그 입력 신호 저주파 통 ·	과 필터 시간 상수.						
C.4.9	390	AIV 신호 범위	0.00	%	0.00	100.00			
	정격값(1	정격값(10V) 백분율로 나타낸 아날로그 신호 범위의 시동값.							
C.4.10	391	AIV 사용자 지정 최소	0.00	%	-160.00	160.00			
	사용자 지	· 정 범위 최소 설정, 예, 209	% = 2-10V						
C.4.11.	392	AIV 사용자 지정 최대	100.00	%	-160.00	160.00			
	사용자 지	이정 범위 최대 설정.							
C.4.12	398	AIV 신호 변환	정상 (0)	-	0	1			
	정상 (0)								
	변환 (1)								

107. 표: 아날로그 입력 설정 하위 메뉴 항목

C.6 - 기본 디지털/릴레이 출력 설정 하위 메뉴

IX	ID	이름		기본값		단위	최소	최대
C.6.1	11001	RO 1 기능	<u>.</u>	실행 (2)		-	0	59
	없음 (0)		대기 (1)		실행 (2)		일반 고장	(3)
	일반 역고장	(4)	일반 알람	(5)	역방향 (6)		속도 (7)	
	서미스터 고	장 (8)	모터 레귤	레이터 활성호	타 (9)	시동 신	호 활성화 ((10)
	키패드 제어	활성화 (11	L) IC)B 제어 활성	화 (12)	한계 감	시 1 (13)	
	한계 감시 2	(14)	호	화재 모드 활성화 (15)		조깅 활성화 (16)		
	다단속 속도	활성화 (17	7) 급	h속 정지 활성	화 (18)	PID 슬립 모드 (19)		
	PID 소프트	필 활성화 (20) PI	D 피드백 감시	시 한계 (21)	외부 PII) 감시 한겨	(22)
	입력 압력 일	삼 고장 (2	3) 人	리 보호 알람	고장 (24)			
	모터 1 제어	(25)	모터 2 제	어 (26)	모터 3 제어	(27)	모터 4 제0	버 (28)
	모터 5 제어	(29)	모터 6 제	어 (30)				
	시간 채널 1	(31)	시간 채널	2 (32)	시간 채널 3	(33)		
	FB 제어원드 B13(34) FB 제어원드 B14(35) FB 제어원드 B15(36)							
	FB 프로세스 데이터 1 BO (37) FB 프로세스 데이터 1 B1 (38) FB 프로세스 데이터 1 R2 (39)							
	유지보수 알	람 (40)	유지보수	고장 (41)				
	기계식 브레	_ 、 / 이크 개방 .	 브레이크 멷	병령 (42)	기계식 브러	이크 변환 ((43)	
	차단 1 (44)	차단 2	(45) 大	나다 3 (46)	차단 4 (47)	차단 5 (48)	
	차단 6 (49)	가는 차단 7	(50) 大	나다 8 (51)	차단 9 (52)	차단 10	(53)	
	· · · · · · · · · · · · · · · · · · ·	어 (54) 사		동 펌프 제어	. 제어 (55) 자동 경		역소 확성화 (56)	
	모터 스위치 개방 (57) 시			이 빕ㅡ ㅐ 험 상시 닫음	(58)	모터예	드 같이다、 열 활성화((59)
C.6.2	11002	RO 1 하시	동작	0.00		<u>·</u> · · ·	0.00	320.00
C.6.3	11003	RO 1 순시	동작	0.00		초	0.00	320.00
C.6.4	11004	RO 2 기능		일반 고장	(3)	-	0	59
	없음 (0)		대기 (1)		실행 (2)		일반 고장	(3)
	일반 역고장	(4)	일반 알람	(5)	역방향 (6)		속도 (7)	
	시미스터 고	장 (8)	모터 레귤	레이터 활성호	탄 (9)	시동 신	호 활성화 ((10)
	키패드 제어	활성화 (11	L) IC) B 제어 활성	화 (12)	한계 감.	시 1 (13)	
	한계 감시 2	(14)	호	·재 모드 활성	화 (15)	조깅 활	성화 (16)	
	다단속 속도 활성화 (17) PID 소프트 필 활성화 (20)			· 녹 정지 활성	화 (18)	PID 슬립	· 모드 (19)	
				D 피드백 감시	시 하계 (21)	 외부 PII	-) 감시 한겨	(22)
	입력 압력 일	· · '람 고장 (2	3) 人	· · · – 리 보호 알람	고장 (24)			
	모터 1 제어	(25)	, 모터 2 제	· ·	모터 3 제어	(27)	모터 4 제0	버 (28)
	모터 5 제어	(29)	모터 6 제	어 (30)				,
	시간 채널 1	(31)	시간 채널	2 (32)	시간 채널 3	(33)		
	지신 제골 1 (51) 지신 제필 2 (52) 지신 제필 3 (53)							
	FB 제어워드 B13(34) FB 제어워드 B14(35) FB 제어워드 B15(36)							
	FB 세어워드 FB 프로세스	. BI3(34) . 데이터 1 I	FB제어워 30(37) FE	드 B14(35) 3 프로세스 데	FB 제어워드 이터 1 B1 (38	B15(36) 3) FB <u>프</u> 루	세스 데이티	+ 1 B2 (39)
IX	ID	이름		기본값		단위	최소	최대
-------	-----------	--------------	--------	-----------------	-------------------	----------	--------------	-------------
	기계식 브레	이크 개방 브레(이크 명	령 (42)	기계식 브러	이크 변환	(43)	
	차단 1 (44)	차단 2 (45)	차답	<u> </u>	차단 4 (47)	차단 5	(48)	
	차단 6 (49)	차단 7 (50)	차답	<u>라</u> 8 (51)	차단 9 (52)	차단 10	(53)	
	충압 펌프 제	∥어 (54)	시성	통 펌프 제어	(55)	자동 청	소 활성화 ((56)
	모터 스위치	개방 (57)	시작	험 상시 닫을	² (58)	모터 예	열 활성화 ((59)
C.6.5	11005	RO 2 한시 동적	ŀ	0.00		초	0.00	320.00
C.6.6	11006	RO 2 순시 동적	ŀ	0.00		초	0.00	320.00
C.6.7	11007	DO 1 기능		대기(1)		-	0	59
	없음 (0)	대기	(1)		실행 (2)		일반 고장	(3)
	일반 역고장	·(4) 일빈	· 알람 ((5)	역방향 (6)		속도 (7)	
	서미스터 고	장(8) 모터	레귤리	네이터 활성	화 (9)	시동 신	호 활성화 ((10)
	키패드 제어	활성화 (11)	IO	B 제어 활성	5 화 (12)	한계 감	시 1 (13)	
	한계 감시 2	(14)	화기	대 모드 활성	5 화 (15)	조깅 활	성화 (16)	
	다단속 속도	활성화 (17)	급፥	속 정지 활성	İ 화 (18)	PID 슬립	믭 모드 (19)	
	PID 소프트	필 활성화 (20)	PIC) 피드백 감	시 한계 (21)	외부 PII	D 감시 한겨	(22)
	입력 압력 일	발람 고장 (23)	서려	믜 보호 알릳	ː 고장 (24)			
	모터 1 제어	(25) 모터	2 제0	(26)	모터 3 제어	(27)	모터 4 제0	ዛ (28)
	모터 5 제어	(29) 모터	6 제0	(30)				
	시간 채널 1	(31) 시긴	채널	2 (32)	시간 채널 3	(33)		
	FB 제어워드	B13(34) FB 7	헤어워드	E B14(35)	FB 제어워드	B15(36)		
	FB 프로세스	데이터 1 BO (3	7) FB	프로세스 더	이터 1 B1 (3	8) FB 프로	세스 데이티	4 1 B2 (39)
	유지보수 알	람(40) 유지	도 수보	그장 (41)				
	기계식 브레	이크 개방 브레이	이크 명	령 (42)	기계식 브러	이크 변환	(43)	
	차단 1 (44)	차단 2 (45)	차대	<u>라</u> 3 (46)	차단 4 (47)	차단 5	(48)	
	차단 6 (49)	차단 7 (50)	차대	<u> </u> 8 (51)	차단 9 (52)	차단 10	(53)	
	충압 펌프 저	어 (54)	시성	통 펌프 제어	(55)	자동 청	소 활성화 (56)
	모터 스위치	개방 (57)	시작	험 상시 닫을	² (58)	모터 예	열 활성화 (-	59)
C.6.8	3084	DO 1 한시 동작	1	0.00		초	0.00	320.00
								1
C.6.9	3085	DO 1 순시 동작	+	0.00		초	0.00	320.00

108. 표: 기본 디지털/릴레이 출력 설정 하위 메뉴 항목

C.11 - 기본 아날로그 출력 설정 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대
C.11.1	10050	AOC 기능	출력 주파수 (2)	-	0	31
	무시험 (0)	전시험 (1)				
	출력 주파	수 (2) [0-f _{MAX}]	기준 주파수 (3) [0-f _N	IAX]		
	모터 속도	모터 속도 (4) [0-모터 정격 속도] 출력 전류 (5) [0-모]	
	모터 토크	모터 토크 (6) [0-모터 정격 토크] 모터 전원 (7) [0-모터 정격 전력]				
	모터 전압	(8) [0-모터 정격 전압]	DC 링크 전압 (9) [0-	1000V]		
	PID 설정갑	よ (10) [0-100%]	PID 피드백 (11) [0-1	00%]		
	PID 출력 ((12) [0-100%]	외부 PID 출력 (13) [(0-100%]		
	필드버스	프로세스 데이터 입력 1 (1	4) [0-100%]			
	필드버스	프로세스 데이터 입력 2 (1	5) [0-100%]			
	필드버스	프로세스 데이터 입력 3 (1	6) [0-100%]			
	필드버스	프로세스 데이터 입력 4 (1	17) [0-100%]			
	필드버스	프로세스 데이터 입력 5 (1	18) [0-100%]			
	필드버스	프로세스 데이터 입력 6 (1	9) [0-100%]			
	필드버스	프로세스 데이터 입력 7 (2	20) [0-100%]			
	필드버스	프로세스 데이터 입력 8 (2	21) [0-100%]			
	차단 1 (22) [0-100%] 차단 2 (23) [0-100%] 차단 3 (24) [0-100%] 차단 4 (25) [0-100				[0-100%]	
	차단 5 (26	5) [0-100%] 차단 6 (27)	[0-100%] 차단 7 (28) [0-100%]	차단 8 (29)	[0-100%]
	차단 9 (30)) [0-100%] 차단 10 (31)) [0-100%]			
C.11.2	10051	AOC 필터 시간	1.00	초	0.00	300
	필터링 없	음 (0)				
C.11.3	10052	AOC 최소	0	%	0.00	100.00
	정격값(20	mA) 백분율로 나타낸 아늘	날로그 신호 범위의 시동값 ·	<u>አ</u> .	1	
C.11.4	10053	AOC 최소 스케일	0.00	가변	가변	가변
	프로세스	의존 단위, 최소 및 최대				
C.11.5	10054	AOC 최대 스케일	0.00	가변	가변	가변
	프로세스	의존 단위, 최소 및 최대.		1	1	
C.11.6	3086	AOV 기능	출력 주파수 (2)	-	0	31
	AOC 기능	과 동일	1			
C.11.7	3087	AOV 필터 시간	1.00	초	0.00	300
	필터링 없	음 (0)				
C.11.8	3088	AOV 최소	0.00	%	0.00	100.00
	정격값(10	V) 백분율로 나타낸 아날로	르그 신호 범위의 시동값.			
C.11.9	3089	AOV 최소 스케일	0.00	가변	가변	가변
	프로세스	의존 단위, 최소 및 최대				
C.11.10	3090	AOV 최대 스케일	0.00	가변	가변	가변
	프로세스	의존 단위, 최소 및 최대.				

109. 표: 기본 아날로그 출력 설정 하위 메뉴 항목

C.20 - 필드버스 데이터 선택 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대
C.20.1	852	필드버스 데이터 출력	출력 주파수 (1)	-	0	3500
		1 선택				
	파라미터	ID가 있는 필드버스 또는	모니터로 보내는 데이터를	선택합니다.	데이터 스	케일은
	제어 패널	클에서 포맷에 따라 16비트	무부호 포맷으로 조정됩니[다. 예를 들이	어, 디스플러	0
	상의 25.	5는 255와 일치합니다. 예를	를 들어, 출력 주파수에 대한	값 2500은	스케일이	
	0.01이므	.로 25.00Hz와 일치합니다.	4.1 모니터링 그룹 챕터에서	볼 수 있는	모든 모니	티링
	값은 측정	정 값으로 주어집니다.		1	1	
C.20.2	853	필드버스 데이터 출력	모터 속도 (2)	-	0	3500
		2 선택				
	파라미터	ID가 있는 필드버스 데이!	러 출력을 선택합니다.			
C.20.3	854	필드버스 데이터 출력	모터 전류 (3)	-	0	3500
		3 선택				
	파라미터	ID가 있는 필드버스 데이터	터 출력을 선택합니다.			
C.20.4	855	필드버스 데이터 출력	모터 토크 (4)	-	0	3500
		4 선택				
	파라미터	ID가 있는 필드버스 데이터	터 출력을 선택합니다.	1	1	
C.20.5	856	필드버스 데이터 출력	모터 출력 (5)	-	0	3500
		5 선택				
	파라미터	ID가 있는 필드버스 데이터	터 출력을 선택합니다.			
C.20.6	857	필드버스 데이터 출력	모터 전압 (6)	-	0	3500
		6 선택				
	파라미터	ID가 있는 필드버스 데이터	터 출력을 선택합니다.			
C.20.7	858	필드버스 데이터 출력	DC 링크 전압 (7)	-	0	3500
		7 선택				
	파라미터	ID가 있는 필드버스 데이!	터 출력을 선택합니다.			
C.20.8	859	필드버스 데이터 출력	최근 활성화 고장 코드	-	0	3500
		8 선택	(37)			
	파라미터	ID가 있는 필드버스 데이터	터 출력을 선택합니다.			

110. 표: 필드버스 데이터 선택 하위 메뉴 항목

C.21 - RS-485 일반 설정(프로토콜 선택) 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대
C.21.1	3103	프로토콜	모드버스 RTU (0)	-	0	3
	모드버스 RTU (0)					

111. 표: RS-485 일반 설정(프로토콜 선택) 하위 메뉴 항목

C.22- 필드버스1-1: 모드버스 RTU 설정 & 모니터링 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대
C.22.1	3166	슬레이브 주소	1	-	1	247
	고유 슬러	에이브 장치 주소	•			
C.22.2	3167	보 레이트	9600 (6)	보	1	9
	통신 속되	<u> </u>				
	300 (1)					
	600 (2)					
	1200 (3)					
	2400 (4)					
	4800 (5)					
	9600 (6)					
	19200 (7)				
	38400 (8)				
	57600 (9)				
C.22.3	3168	패리티 유형	없음 (0)	-	0	2
	없음 (0)					
	홀 (1)					
	짝 (2)					
C.22.4	3169	정지 비트	1	비트	0	1
C.22.5	3104	통신 타임아웃	0	초	0	65535
	연결 해제	ㅔ 시 모드버스 보드는 통신 오류	를 초기화합니디	h. 통신 타임	아웃 파라	미터는
	클라이언	트에서 받은 패키지 간 최소 지영	견을 정의합니다	. 타이머는 i	리셋되며 격	삭 패키지
	수신 후	시동됩니다. 이 파라미터는 클라	이언트가 주기적	으로 슬레이	브를 폴링	하는 경우
	사용될 수	▷ 있습니다.				
	미사용 (())				
C.22.6	3105	필드버스 프로토콜 상태	0	-	0	3
	필드버스	프로토콜 상태로 프로토콜의 싱	t태를 알 수 있습	하니다.		
	초기화 (()) = 프로토콜이 시작합니다.				
	정지 (1)	= 프로토콜이 이용되지 않거나	타임아웃 상태입	니다.		
	실행 (2)	= 프로토콜이 실행 중입니다.				
	고장 (3)	= 프로토콜에 중대한 고장이 발 [.]	생해 재시작해야	합니다.		
C.22.15	3114	제어워드	0	-	0	FFFFFFFF h
	드라이브	애플리케이션에서 수신한 최근	제어워드(판매자	다 사양 포맷	!). (디버깅	목적으로
	이용될 수	▷ 있습니다.)				
C.22.16	3115	상태워드	0	-	0	FFFFFFFF h
	드라이브	애플리케이션에서 수신한 최근	상태워드(판매자	다 사양 포맷	!). (디버깅	목적으로
	이용될 수	녹 있습니다.)				

112. 표: 필드버스1-1: 모드버스 RTU 설정 & 모니터링 하위 메뉴

C.25 - Ethernet 일반 설정 (프로토콜 선택) 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대
C.25.1	3116	IP 주소 모드	DHCP (0)	-	0	1
	DHCP 프	로토콜이 자동으로 IP 주소를	로컬 네트워크	.를 연결하는	= 새로운 장	치로 할당합니다.
	자동 할당	당된 IP 주소는 일정 기간 동안	! 유효합니다. D	HCP 서버기	ㅏ 발견되지	않으면 자동 랜덤
	IP가 할딩	상됩니다. 고정 IP 주소는 수동	으로 지정되며	시간이 지니	·도 변하지 '	않습니다.
	DHCP (0)				
	고정 (1)					
C.25.2	3117	고정 IP 주소	가변	-	0.0.0.0	255.255.255.255
	IP 주소는	- 인터넷에 연결된 장치에 고	유한 일련의 숫	자 (위와 같	음)로 구성됩	입니다.
C.25.3	3118	고정 서브넷 마스크	가변	-	0.0.0.0	255.255.255.255
	네트워크	마스크는 IP 주소의 모든 비	트를 표시하여	네트워크 및	시브넷을	식별합니다.
C.25.4	3119	고정 기본 게이트웨이	가변	-	0.0.0.0	255.255.255.255
	네트워크	마스크는 IP 주소의 모든 비	트를 표시하여	네트워크 및	시브넷을	식별합니다.
C.25.5	3120	IP 주소	가변	-	0.0.0.0	255.255.255.255
	IP 주소는	- 인터넷에 연결된 장치에 고	유한 일련의 숫	자 (위와 같	음)로 구성됩	빕니다.
C.25.6	3121	서브넷 마스크	가변	-	0.0.0.0	255.255.255.255
	네트워크	- 마스크는 IP 주소의 모든 비	트를 표시하여	네트워크 및	! 서브넷을 ~	식별합니다.
C.25.7	3122	기본 게이트웨이	가변	-	0.0.0.0	255.255.255.255
	네트워크	- 마스크는 IP 주소의 모든 비	트를 표시하여	네트워크 및	! 서브넷을 ~	식별합니다.
C.25.8	3123	MAC 주소	가변	-	-	-
	제어 보드	드의 MAC 주소. MAC 주소 (미	내체 접근 제어)는	= 각 네트워	크 호스트이	ㅔ 주어진 고유한
	주소로 수정이 불가합니다.					

113. 표: Ethernet 일반 설정(프로토콜 선택) 하위 메뉴 항목

C.26 - 필드버스2-1: 모드버스 TCP 하위 메뉴

IX	ID	이름	기본값	단위	최소	최대
C.26.1	3124	연결 한계	3	-	0	3
	허용 연결	별 수. 서버에 동시에 접속할 수 였	있는 클라이언트	의 수를 정의	합니다.	
C.26.2	3125	장치 식별자 번호	1	-	0	255
	모드버스	시리얼 라인에서 주로 사용하는	- 모드버스 '슬레	이브 주소'	필드는 단을	일 바이트
	'장치 식'	별자'로 대체됩니다. TCP/IP에서	모드버스 서버는	· IP 주소를	이용해	
	프로세스	되므로, 모드버스 장치 식별자는	필요가 없습니	다.		
C.26.3	3126	통신 타임아웃	0	초	0	65535
	연결 해제	네 시 모드버스 보드는 통신 오류	를 초기화합니디	. 통신 타임	아웃 파라띠	기터는
	클라이언	트에서 받은 패키지 간 최소 지역	견을 정의합니다.	타이머는 :	믜셋되며 긱	ᅣ 패키지
	수신 후	시동됩니다. 이 파라미터는 클라	이언트가 주기적	으로 슬레이	브를 폴링	하는 경우
	사용될 수 있습니다.					
	미사용 (())				
C.26.4	3127	필드버스 프로토콜 상태	0	-	0	3

IX	ID	이름	기본값	단위	최소	최대
	필드버스	프로토콜 상태로 프로토콜의 싱	t태를 알 수 있습	·니다.		
	초기화 (()) = 프로토콜이 시작합니다.				
	정지 (1)	= 프로토콜이 이용되지 않거나	타임아웃 상태입	니다.		
	실행 (2)	= 프로토콜이 실행 중입니다.				
	고장 (3)	= 프로토콜에 중대한 고장이 발 [,]	생해 재시작해야	합니다.		
C.26.13	3136	제어워드	0	-	0	FFFFFFFF h
	드라이브	애플리케이션에서 수신한 최근	제어워드워드(핀	한매자 사양	포맷). (디브	버깅
	목적으로	이용될 수 있습니다.)				
C.26.14	3137	상태워드	0	-	0	FFFFFFFF h
	드라이브 애플리케이션에서 수신한 최근 상태워드워드(판매자 사양 포맷). (디버깅					
	목적으로	이용될 수 있습니다.)				

114. 표: 필드버스2-1 항목: 모드버스 TCP 하위 메뉴

그룹 H - 모터 파라미터 그룹

H.1 - 모터 명판 설정

IX	ID	이름	기본값	단위	최소	최대
H.1.1	650	모터 유형	유도 전동기 (0)	-	0	0
	유도 전	동기 (0)				
H.1.2	116	모터 정격 전력	가변	가변	가변	가변
	프레임	별 범위 및 기본값				
H.1.3	110	모터 정격 전압	가변	V	가변	가변
	프레임	별 선간전압 범위 및 기본값				
H.1.4	111	모터 정격 주파수	가변	Hz	8.00	320.00
	국가에	따른 기본값				
H.1.5	112	모터 정격 속도	가변	rpm	24	19200
	프레임	별 기본값.				
H.1.6	113	모터 정격 전류	가변	А	0.1IHD	2IHD
	프레임 별 기본값.					
H.1.7	120	모터 정격 전력 인자	가변	-	0.30	1.00
	프레임	별 기본값.				

115. 표: 모터 명판 설정 하위 메뉴 항목

H.3 - 오토튜닝 파라미터(IM)

IX	ID	이름	기본값	단위	최소	최대	
	631	오토튜닝	동작 없음 (0)	-	0	2	
	오토튜닝	이 자동으로 연결된 모터의 피	마라미터를 측정합니	다.			
H.3.1	동작 없음	- (0)					
	정지 상태	(1)					
	회전 상태	(2)					
L 2 2	612	자화 전류	-	А	0.00	2 I _{HD}	
п.э.2	모터의 오토튜닝 자화 전류						
L 2 2	3174	R1	-	Ohm	-	-	
п.э.э	모터의 오토튜닝 고정자 저항.						
L 2 4	3175	R2	-	Ohm	-	-	
п.э.4	모터의 오토튜닝 회전자 저항.						
цэг	3197	Ls	-	Н	-	-	
п.э.э	모터의 오	모터의 오토튜닝 고정자 인덕턴스.					
L 2 7	3198	Lu	-	Н	-	-	
п.э./	모터의 오	토튜닝 자화 인덕턴스.					

116. 표: 오토튜닝 파라미터(IM) 하위 메뉴 항목

폴트

폴트 코드, ID, 이름, 상당한 근거, 권장 해결책

인버터가 비정상 가동을 인지한 경우, HMI 키패드 디스플레이에 메시지가 표시됩니다. 메시지는 ID 이름과 발생한 사건에 대한 간략한 설명으로 구성됩니다. 인버터가 인지할 수 있는 사건 유형으로는 알람과 고장이 있습니다. 알람 또는 고장에 대한 반응은 사건 종속 파라미터로 결정할 수 있습니다. 일반적으로, 다음(열거) 목록 상의 한 가동을 선택할 수 있습니다.

- 동작 없음 (0)
- 알람(1)
- 알람 사전설정 고장 주파수 (2)
- 알람 전 기준 주파수 (3)
- 정지 모드에 따른 고장 정지 (4)
- 프리런으로 고장 정지 (5)

알람이나 고장은 항상 수동으로 확인 가능합니다 (리셋). 특정 사건을 자동으로 확인 (리셋)하도록 인버터를 설정할 수 있습니다.

참조!

인버터와 함께 사용 가능한 사건 리셋 로직에 관한 보다 자세한 정보는 *고장 리셋* 하위 메뉴에 있는 해당 항목을 참조하세요.

수동으로 사건을 확인 (리셋)할 수 있는 방법이 여러 가지가 있습니다.

- HMI 키패드에 있는 "BACK/RESET" 버튼 이용
 - o "BACK/RESET" 버튼을 짧게 작동시키면 사건 표시창이 닫힙니다.
 - o "BACK/RESET" 버튼을 짧게 작동시키면 사건을 확인 (리셋)하지 않습니다!
- HMI 키패드 또는 HIMS 소프트웨어 툴을 이용해 고장 리셋 하위 메뉴의 전용 메뉴 항목 이용
- 적절히 구성된 I/O 터미널의 디지털 입력을 통해 (고장 리셋 개방 또는 고장 리셋 폐쇄)
- 전용 주소에 해당 데이터를 기록하는 필드버스를 통해

인버터가 인식하는 모든 비정상 가동은 디스플레이 그룹₩고장 이력에 기록됩니다.

고장 리셋하기 (예)

인버터가 고장을 표시하며 작동을 중단하는 경우, 고장 원인을 조사한 후 고장을 리셋합니다. "BACK/RESET" 버튼 및 파라미터 등 고장을 리셋하는 데에는 2가지 절차가 있습니다. HMI 키패드에서 "BACK/RESET" 버튼으로 리셋하기

그림 50: "BACK/RESET" 버튼으로 고장 리셋하기에 필요한 버튼

단계	지시사항	상세 설명
1 다니게	키패드에 있는 리셋 버튼을 2초	키패드에 있는 리셋 버튼을 2초 이상 누르고
그런게	이상 누르세요.	모든 활성화 고장을 확인하세요.

표 117: "BACK/RESET" 버튼으로 고장 리셋하기에 필요한 단계

HMI 키패드 또는 HIM 소프트웨어 툴에서 파라미터로 리셋하기

단계	지시사항	상세 설명	
1 다니게	하모이 의치를 차이네이	고급 설정 그룹/고장 리셋₩수동 고장 리셋	
1년계	영국의 귀지를 젖으세요. 	메뉴 항목으로 이동합니다.	
		OK 버튼을 두 번(2회) 누르거나 오른쪽	
2단계	고장을 리셋하세요.	버튼을 한 번(1회)눌러 모든 활성화 고장을	
		리셋합니다.	

표 118: "BACK/RESET" 버튼으로 고장 리셋하기에 필요한 단계

고장 이력 표시하기

인버터 메뉴 구조 내에서 고장 이력 사십(40) 개 항목을 볼 수 있습니다.

참조!

고장 이력 관련 파라미터 및 고장 이력은 디스플레이 그룹₩고장 이력 메뉴 위치에 있습니다.

단계	지시사항	상세 설명		
1단계	항목의 위치를 찾으세요.	디스플레이 그룹₩고장 이력으로 이동하세요.		
		OK 버튼을 두 번(2회) 누르거나 오른쪽		
2단계	상황에 맞는 메뉴로 들어가세요.	버튼을 한 번(1회)눌러 상세 고장 정보를		
		표시합니다.		
고다게	사하에 마느 메느르 다이네이	"BACK/RESET" 버튼을 눌러 상세 고장 정보		
3년계	성황에 맞는 메뉴를 받으세요. 	창을 닫습니다.		

119. 표: 고장 이력 평가에 필요한 단계

참조!

예상치 못했거나 일반적이지 않은 인버터 가동과 관련해 전문적인 지원을 요청하기에 앞서 메시지 창의 콘텐츠를 준비해 주시요

참조!

고장 코드, ID, 이름, 상당한 근거, 권장 해결책 표에 각각 해당하는 항목을 읽어 보세요.

폴트	ID	NAME	PROBABLE CAUSE						
0	0	이상 없음	정상 작동						
	인버터는	- 구성된대로 작동합니다.							
1	1	과전류(HW)	모터 케이블에 의해 흐르는 전류가 너무 높습니다 (> 4IHD). 다양한 이유가 있지만 대표적으로, - 부하 동특성 불일치 (예 : 급격한 하중 증가) - 모터 케이블 오 배선 (예 : 단락) - 부적합한 시스템 시스템 파라미터 구성 (예 : 인버터가 작동하기에 적합하지 않은 모터)						
	부하가 인버터에 연결하기에 적합한 지 확인하십시오. 모터가 인버터에 연결하기에 적합한 지 확인하십시오. 케이블 단자와 인버터의 단자를 다시 확인하십시오. 파라미터 값을 다시 확인하십시오. 파라미터의 값을 조정하는 것을 고려하십시오 (예 : 가속 및 감속 시간). 자동 모터 식별 실행 실행을 고려하십시오.								
1	2	과전류 A	모터 케이블에 의해 흐르는 전류가 너무 높습니다 (> 4IHD). 다양한 이유가 있지만 대표적으로, - 부하 동특성 불일치 (예 : 급격한 하중 증가) - 모터 케이블 오 배선 (예 : 단락) - 부적합한 시스템 시스템 파라미터 구성 (예 : 인버터가						
	부하가 '	 인버터에 연결하기에 적힙	작동하기에 적합하지 않은 모터) 한 지 확인하십시오. 모터가 인버터에 연결하기에						
	적합한 지 확인하십시오. 케이블 단자와 인버터의 단자를 다시 확인하십시오. 파라미터 값을 다시 확인하십시오. 파라미터의 값을 조정하는 것을 고려하십시오 (예 : 가속 및								
	감속 시간). 자동 모터 식별 실행 실행을 고려하십시오.								
1	3	과전류 B	모터 케이블에 의해 흐르는 전류가 너무 높습니다 (> 4IHD). 다양한 이유가 있지만 대표적으로, - 부하 동특성 불일치 (예 : 급격한 하중 증가) - 모터 케이블 오 배선 (예 : 단락) - 부적합한 시스템 시스템 파라미터 구성 (예 : 인버터가 작동하기에 적합하지 않은 모터)						
	부하가 인버터에 연결하기에 적합한 지 확인하십시오. 모터가 인버터에 연결하기에 적합한 지 확인하십시오. 케이블 단자와 인버터의 단자를 다시 확인하십시오. 파라미터 값을 다시 확인하십시오. 파라미터의 값을 조정하는 것을 고려하십시오 (예 : 가속 및 각소 시간) 자동 모터 시별 실행 실행을 고려하십시오								
1	4	과전류 C	모터 케이블에 의해 흐르는 전류가 너무 높습니다 (> 4IHD). 다양한 이유가 있지만 대표적으로, - 부하 동특성 불일치 (예 : 급격한 하중 증가) - 모터 케이블 오 배선 (예 : 단락)						

폴트	ID	NAME	PROBABLE CAUSE						
			- 부적합한 시스템 시스템 파라미터 구성 (예 : 인버터가 작동하기에 적합하지 않은 모터)						
	부하가 인버터에 연결하기에 적합한 지 확인하십시오. 모터가 인버터에 연결하기에 적합한 지 확인하십시오. 케이블 단자와 인버터의 단자를 다시 확인하십시오. 파라미터 값을 다시 확인하십시오. 파라미터의 값을 조정하는 것을 고려하십시오 (예 : 가속 및 감속 시간). 자동 모터 식별 실행 실행을 고려하십시오.								
2	10	DC 과전압 (HW)	DC 링크 전압이 너무 높습니다. - 부적합한 외부 전원 공급 장치 - 부적절한 파라미터 값 (예 : 급감속)						
2	케이블 단자와 인버터의 단자를 다시 확인하십시오. 외부 전원 공급 장치의 동작을 다시 확인하십시오. 파라미터 값 (예 : 감속 시간)을 조정하는 것을 고려하십시오. 선택적으로 사용할 수있는 브레이크 초퍼 또는 제동 저항기의 적용을 고려하십시오. 과전압 컨트롤러의 활성화를 고려하십시오.								
2	11	DC 과전압	DC 링크 전압이 너무 높습니다. - 부적합한 외부 전원 공급 장치 - 부적절한 파라미터 값 (예 : 너무 빠른 감속)						
Ζ	케이블 단자와 인버터의 단자를 다시 확인하십시오. 외부 전원 공급 장치의 동작을 다시 확인하십시오. 파라미터 값 (예 : 감속 시간)을 조정하는 것을 고려하십시오. 선택적으로 사용할 수있는 브레이크 초퍼 또는 제동 저항기의 적용을 고려하십시오. 과전압 컨트롤러의 활성화를 고려하십시오.								
3	21	지락	모터 위상 전류의 비대칭 성은 지락 조건을 발생 시킵니다. - 모터 또는 모터 케이블 절연 불량 - 외부 부품 오작동						
	케이블 년	·사와 인버터의 난사들 나시	확인하십시오.						
5	40 폴트를 획 지원을 요	소기공신 이상 }인 (리셋)하고 인버터의 전원 2청하십시오.	조기 중신 외로 미성성 원 공급을 재시도 하십시오. 오류가 계속 표시되면 공식적인						
7	60 메시지를 인버터에 요청하십	인버터 내부 구성 이상 확인할 수없는 경우 공식적 서 전원 공급 장치를 분리하 시오	내부 구성 요소 폴트 인 지원을 요청하십시오. 고 인버터에 전원 재 공급하지 않고 공식 지원을						
	603	15V 전원 이상	내부 전원 공급 장치 폴트						
8	폴트를 획 지원을 요	ነ인 (리셋)하고 인버터의 전원 ὰ청하십시오.	원 공급을 재시도 하십시오. 폴트가 계속 표시되면 공식적인						
	608	내부 이상	내부 리소스 불충분						
8	폴트를 획 지원을 요	낙인 (리셋)하고 인버터의 전원 ù청하십시오.	원 공급을 재시도 하십시오. 폴트가 계속 표시되면 공식적인						
8	601	내부 통신 이상	내부 통신 실패						

폴트	ID	NAME	PROBABLE CAUSE						
	폴트를 획 지원을 요	ነ인 (리셋)하고 인버터의 전원 ὰ청하십시오.	원 공급을 재시도 하십시오. 폴트가 계속 표시되면 공식적인						
	600	내부 통신 이상	내부 통신 실패						
8	폴트를 획 공식적인	· {인 (리셋)하고 인버터의 전원 지원을 요청하십시오.	원 공급을 재시도 하십시오. 폴트가 계속 표시되면						
	609	MCB 내부 폴트	내부 부품 오작동						
8	폴트를 획 지원을 요	ነ인 (리셋)하고 인버터의 전원 2청하십시오.	원 공급을 재시도 하십시오. 폴트가 계속 표시되면 공식적인						
	606	소프트웨어 버전 불일치	소프트웨어 비 호환성						
8	폴트를 혹 지원을 요	남인 (리셋)하고 인버터의 전원 2청하십시오.	^원 공급을 재시도 하십시오. 폴트가 계속 표시되면 공식적인						
	602	부품 결함	내부 구성 요소 폴트						
8	폴트를 획 지원을 요	ነ인 (리셋)하고 인버터의 전원 2청하십시오.	실 공급을 재시도 하십시오. 폴트가 계속 표시되면 공식적인						
	614	소프트웨어 에러	내부 구성 요소 오작동 또는 소프트웨어 비 호환성						
8	폴트를 확인 (리셋)하고 인버터의 전원 공급을 재시도 하십시오. 폴트가 계속 표시되면 공식적인 지원을 요청하십시오.								
	649	파라미터 백업/복구 에러	파라미터 관리 실패						
8	폴트를 획 지원을 요	안 (리셋)하고 인버터의 전원 2청하십시오.	실 공급을 재시도 하십시오. 폴트가 계속 표시되면 공식적인						
9	80	DC 저전압	DC 링크 전압이 너무 낮습니다. - 외부 전원 공급 장치 공급 전압이 너무 낮음 - 입력 퓨즈 오작동 - 이부 축적 스위치 오작동						
	일반적인 상태에서	계통 고장시에는 고장을 리· 만 활성화됩니다.	셋하고 인버터에 전원 재투입 하십시오. 이 폴트는 RUN						
10	91	입력 결상	- 외부 전원 공급 장치 공급 전압이 너무 낮음 - 입력 퓨즈 오작동 기능 동작하기 위해서는 최소 10-20 %의 부하가 인가되어야 합니다.						
	일반적인 상태에서	계통 고장시에는 고장을 리· 만 활성화됩니다.	셋하고 인버터에 전원 재투입 하십시오. 이 폴트는 RUN						
11	100	출력 결상	모터 전류의 비대칭성은 출력 결상의 조건이 됩니다. - 모터 또는 모터 케이블 절연 불량 - 외부 부품 오작동						
	케이블 딘	산자와 인버터의 단자를 다시	확인하십시오.						
12	112	제동 저항 이상	브레이크 초퍼 또는 브레이크 저항기 오작동.						
	브레이크	저항과 브레이크 초퍼 케이·	블을 다시 확인하십시오. 공식적인 지원을 요청하십시오.						

폴트	ID	NAME	PROBABLE CAUSE							
	111	제동 이상	내부 구성 요소 폴트							
12	메시지를 확인할 수없는 경우 공식적인 지원을 요청하십시오. 인버터에서 전원 공급 장치를 분리하고 인버터에 전원 재 공급하지 말고 공식 지원을									
	요청하십	시오								
	130	IGBT 과온	내부 온도 보호							
14	냉각 팬, -	흡입구 및 배출구에 먼지와	접근 용이성이 있는지 다시 확인하십시오. 인버터 주변의							
	주위 온도	를 재확인하십시오. 주위 온	도 및 모터 부하의 함수로서 인버터 스위칭 주파수를							
	변경하는	것을 고려하십시오.								
	131	주위온도 과온	내부온도보호							
14	냉각 팬, -	흡입구 및 배출구에 먼지와	접근 용이성이 있는지 다시 확인하십시오. 인버터 주변의							
	주위 온도를 재확인하십시오. 주위 온도 및 모터 부하의 함수로서 인버터 스위칭 주파수를									
	번경야는 140	짓글 고려아쉽지오. 미디 시소	모터 신소 비승 화서하 되							
15	부하가 9	_ ㅗ ᅴ ᆯ ᆨ 버티에 여격하기에 전한하	지 확이하십시오. 모터가 이버터에 여격하기에 전하하 지							
	구희가 한마니에 한글아가에 국립한 시 확한아랍지도, 모디가 한마니에 한글아가에 적합한 시 확인하십시오. 모터 실속 방지 파라미터를 다시 조정하십시오.									
	150	모터 과열 보호	모터 열 보호 활성화 됨							
16	부하가 인버터에 연결하기에 적합한 지 확인하십시오. 모터가 인버터에 연결하기에 적합한 지									
	확인하십시오. 모터 열 보호 파라미터를 다시 조정하십시오.									
	160	부족 부하	모터 부하가 한도 아래로 떨어졌습니다.							
17	부하가 인버터에 연결하기에 적합한 지 확인하십시오. 모터 부족 부하 보호 파라미터									
	값을 다시 확인하십시오.									
10	180	단시간 과부하	단시간 동안 인버터 입력 또는 출력 전력 한계 초과.							
19	부하가 인	비터에 연결하기에 적합한	지 확인하십시오.							
10	181	장시간 과부하	장시간 동안 인버터 입력 또는 출력 전력 한계 초과.							
	부하가 인	비터에 연결하기에 적합한	지 확인하십시오.							
	523	STO 5V 이상	내부 안전 회로의 오작동							
30	폴트를 확인 (리셋)하고 인버터의 전원 공급을 재시도 하십시오. 폴트가 계속 표시되면 공식적인									
	지원을 요	2청하십시오.								
30	530	STO 이상	안전 토크 오프 (STO)가 활성화되었습니다.							
	211		교 소드 피드바 으자드							
32		엔 이경 사회과 타고 벤칭 사내 이	1번 국도 비드릭 조익승.							
	- 팬글 성2	조아거나 교세아십시오. 	패 스머이 취계에 드다하스니티							
32	אר ס ו וכ דוכ	엔 구경 노걸 레치그 팬 스머 키이디르 ·	팬 구경의 안계에 포털했답니다. 리세하시나요							
	- 벤글 교/	웨아끄 쐔 구경 가준더들 	티깟아쉽시오.							
40	390	급전모드 또는 파워 소자 인식폴트	알 수없는 옵션 보드 또는 전원 장치가 연결되었습니다.							

폴트	ID	NAME	PROBABLE CAUSE						
	알 수없는 장치를 제거하십시오.								
	400	IGBT 과온(계산)	계산 된 IGBT 온도가 한계를 초과합니다.						
41	주변 온도 및 부하에 대한 스위칭 주파수 파라미터 설정을 다시 확인하십시오. 냉각 시스템 기능								
	및 주변 출	조건을 다시 확인하십시오. 능	생각 팬을 점검하십시오. 신분 확인을하십시오.						
46	662	배터리 이상	RTC 배터리의 전압이 낮습니다.						
	RTC 배티	거리를 교체하십시오.							
47	663	어데이트 서고	인버터의 소프트웨어 구성 요소가 성공적으로						
4/		합네이드 경종	업데이트되었습니다.						
50	1050	아날로그 하한 입력	AT low fault 화서하 되						
	1050	이상							
	아날로그	1 입력 연결, 배선 및 파라	·미터를 재확인하십시오.						
г1	1051	외부 폴트	외부 폴트 활성화 됨						
JT	이 폴트는 사용자 정의 폴트입니다. 외부 폴트 파라미터를 다시 확인하십시오.								
50	1052	HMI 통신 폴트	HMI 키패드 통신 폴트 활성화 됨						
52	통신선의	ㅣ배선 및 연결을 다시 확	인하십시오.						
	1053	필드버스 통신 폴트	필드 버스 통신 폴트 활성화 됨						
53	통신선의 배선 및 연결을 다시 확인하십시오. 통신 시스템 구성 요소의 접지를 다시								
	확인하십시오.								
	1057	모터 식별(튜닝) 폴트	모터 식별(튜닝)에 실패했습니다.						
57	모터 케이블 배선 및 연결을 다시 확인하십시오. 모터 샤프트가 장착되어 있지 않은지								
57	확인하십시오. 식별 작업이 완료되기 전에 START 명령이 제거되지 않았는지								
	확인하십	시오 (STOP 명령이 제공	되지 않음).						
58	1058	기계적 제동 폴트	기계식 브레이크 상태 감시 활성화						
	기계식 !	브레이크 감시 파라미터를	재확인하십시오.						
63	1063	빠른 정지 폴트	빠른 정지 활성화 됨						
	빠른 정기	지 폴트 파라미터를 다시	확인하십시오.						
65	1065	HIMS 통신 폴트	HIMS 소프트웨어 도구 통신 폴트가 활성화되었습니다.						
	통신선의	비배선 및 연결을 다시 확	인하십시오.						
68	1301	유지보수 카운트 1 알람	유지 보수 카운터의 값이 경보 제한보다 높습니다.						
	유지 보=	수를 수행하고 유지 보수	카운터를 리셋하십시오.						
68	1302	유지보수 카운트 1 초과	유지 보수 카운터의 값이 폴트 한계보다 높습니다.						

폴트	ID	NAME	PROBABLE CAUSE								
	유지 보=	유지 보수를 수행하고 유지 보수 카운터를 리셋하십시오.									
68	1303	유지보수 카운트 2 알람	유지 보수 카운터의 값이 경보 제한보다 높습니다.								
	유지 보=	수를 수행하고 유지 보수 🗄	카운터를 리셋하십시오.								
68	1304	유지보수 카운트 2 초과	유지 보수 카운터의 값이 폴트 한계보다 높습니다.								
	유지 보수를 수행하고 유지 보수 카운터를 리셋하십시오.										
69	1310	필드버스 프로세스 데이터 폴트	프로세스 데이터 출력 (16 비트) 매핑 및 변환 중 잘못된 ID								
	매핑 및	변환 프로세스에 제공된 ⁻	필드 버스 데이터를 다시 확인하십시오.								
76	1076	기동 방지	모터의 우발적인 또는 원치 않는 회전을 방지하기 위해 최초 시동 중 및 기본값 복원 후 시동 명령이 차단됩니다								
	원하는 작업으로 진행하려면 폴트를 확인 (리셋)하십시오.										
100	1100	PID 소프트 필 폴트	Soft Fill Timeout (ID 1096) 파라미터로 설정된 제한 시간 내에 soft-fill-controlled process 값에 도달하지 못했습니다								
	감시 프로세스와 인버터와의 인터페이스 (단자 및 연결)를 다시 확인하십시오. soft fill 파라미터를 다시 확인하십시오.										
101	1101	PID 감시 폴트	피드백 감시 신호 (내부 PID 피드백 신호)는 상한 (ID 736), 하한 (ID 758) 및 지연 (ID 737) 파라미터로 설정된 경계 외부에 있습니다								
	감시 프로세스와 인버터와의 인터페이스 (단자 및 연결)를 다시 확인하십시오. 피드백 감시										
	파라미터	를 다시 확인하십시오.									
105	1105	외부PID 감시 폴트	피드백 감시 신호 (외부 PID 피드백 신호)는 상한 (ID 1660), 하한 (ID 1661) 및 지연 (ID 1662) 파라미터로 설정된 경계 외부에 있습니다								
	감시 프로세스와 인버터와의 인터페이스 (단자 및 연결)를 다시 확인하십시오. 피드백 감시 파라미터를 다시 확인하십시오.										
109	1409	입력 압력 감시 폴트	입력 압력 감시에 사용되는 감시 신호 (ID 1686)는 감시 폴트 레벨 (ID 1692)보다 낮습니다.								
103	감시 프로 파라미터	세스와 인버터와의 인터페여 를 다시 확인하십시오.	이스 (단자 및 연결)를 다시 확인하십시오. 입력 압력 감시								
100	1109	입력 압력 감시 알람	입력 압력 감시에 사용되는 감시 신호 (ID 1686)는 감시 경보 레벨 (ID 1691)보다 낮습니다.								
109	감시 프로세스와 인버터와의 인터페이스 (단자 및 연결)를 다시 확인하십시오. 입력 압력 감시 파라미터를 다시 확인하십시오.										

폴트	ID	NAME	PROBABLE CAUSE					
11/	1114	사용자 정의 1 폴트	사용자 정의 1 폴트 활성화 디지털 입력이 참입니다.					
114	사용자 정	성의 폴트 설정 (A.19)을 다시	확인하십시오.					
115	1115	사용자 정의 2 폴트	사용자 정의 2 폴트 활성화 디지털 입력이 참입니다.					
113	사용자 정	성의 폴트 설정 (A.19)을 다시	확인하십시오.					
201	2201	주파수 기준(지령) 손실 폴트	주파수 기준 소스와의 연결이 끊어 지거나 없습니다.					
201	이 보호는 아날로그 입력 및 필드 버스 속도 참조에서만 작동합니다. 선택한 주파수 기준(지령)을							
	확인하십	시오. 필드 버스 연결 설정괴	- 필드 버스 또는 아날로그 입력의 배선을 점검하십시오.					
202	2202	DC 회로 폴트						
202								
202	2203	모터 저속 폴트	모터 속도가 주어진 한계 이하입니다.					
203	모터 속!	도 보호 설정과 기계에 연·	결된 부하를 점검하십시오.					
202	2213	모터 과속 폴트	모터 속도가 주어진 한도 아래입니다					
203	모터 속!	도 보호 설정과 기계에 연·	 결된 부하를 점검하십시오.					
204	2204	모터 부족 토크 폴트	모터 토크가 주어진 한도 아래입니다					
204	모터 보호	호 설정과 기계에 연결된 ·	부하를 점검하십시오.					
204	2214	모터 과토크 폴트	모터 토크가 주어진 한도 아래입니다					
204	모터 보호	호 설정과 기계에 연결된	부하를 점검하십시오.					

12020. 표: 폴트명 및 발생 원인

기술 데이터

전력 정격

주전압 208~240V

표 1211 주전압 208~240V, 50~60Hz, 3상의 경우, HiD500 시리즈 정격 전력

		부하능								모터 샤프트 출력			
	드라이브	경부하				중부하		S	주전원 230V		주전원 230V		
프레임	유형 HiD500- 3L	직류 IL [A]	입력 전류 Iin [A]	10% 과부하 전류 [A]	직류 IH [A]	입력 전류 Iin [A]	50% 과부하 전류 [A]	최대 전류 Is2	10% 과부하 40°C[kW]	50% 과부하 50°C[kW]	10% 과부하 40°C[hp]	50% 과부하 50°C[hp]	
	0003-2	3.7	3.2	4.1	2.6	2.4	3.9	5.2	0.55	0.37	0.75	0.5	
	0004-2	4.8	4.2	5.3	3.7	3.2	5.6	7.4	0.75	0.55	1.0	0.75	
FD1	0007-2	6.6	6.0	7.3	4.8	4.5	7.2	9.6	1.1	0.75	1.5	1.0	
FKI	0008-2	8	7.2	8.8	6.6	6.0	9.9	13.2	1.5	1.1	2.0	1.5	
	0011-2	11	9.7	12.1	8	7.2	12.0	16.0	2.2	1.5	3.0	2.0	
	0012-2	12.5	10.9	13.8	9.6	8.6	14.4	19.2	3.0	2.2	4.0	3.0	
	0018-2	18	16.1	19.8	12.5	11.5	18.8	25.0	4.0	3.0	5.0	4.0	
FR2	0025-2	25	21.7	27.5	18	16.1	27.0	36.0	5.5	4.0	7.5	5.0	
	0031-2	31	27.7	34.1	25	22.5	37.5	50.0	7.5	5.5	10.0	7.5	
502	0048-2	48	43.8	52.8	31	28.5	46.5	62.0	11.0	7.5	15.0	10.0	
FKS	0062-2	62	57.0	68.2	48	44.2	72.0	96.0	15.0	11.0	20.0	15.0	
	0075-2	75	69	82.5	62	57.0	93.0	124.0	18.5	15.0	25.0	20.0	
FR4	0088-2	88	82	96.8	75	70.0	112.5	150.0	22.0	18.5	30.0	25.0	
	0116-2	116	99	127.6	88	82.1	132.0	176.0	30.0	22.0	40.0	30.0	
	0146-2	146	135	160.6	116	109.0	174.0	232.0	37.0	30.0	50.0	40.0	
FR5	0170-2	170	162	187.0	146	133.0	219.0	292.0	45.0	37.0	60.0	50.0	
	0220-2	220	215	242.0	170	163.0	255.0	340.0	55.0	45.0	75.0	60.0	
EDG	0261-2	261	253	287.1	220	210.0	330.0	440.0	75.0	55.0	100.0	75.0	
FR6	0310-2	310	301	341.0	261	246.0	391.5	522.0	90.0	75.0	125.0	100.0	

주어진 주위 온도의 전류는 스위칭 주파수가 기본값 이하인 경우에만 가능합니다.

프로세스 상에 순환 부하, 예를 들어 리프트나 윈치가 있는 경우가 포함되는 경우에는 제조사에 치수 정보를 문의하세요.

주전압 380~500V

참조!

표 3	1222	주전압	380~500V,	50~60Hz,	3상의	경우,	HiD500	시리즈	정격	전력
------------	------	-----	-----------	----------	-----	-----	--------	-----	----	----

		부하능								모터 샤프트 출력			
	드라이브	경부하				중부하			주전원 400 V		주전원 480 V		
프레임	유형 HiD500- 3L	직류 IL [A]	입력 전류 Iin [A]	10% 과부하 전류 [A]	직류 IH [A]	입력 전류 Iin [A]	50% 과부하 전류 [A]	최대 전류 Is2s	10% 과부하 40°C[kW]	50% 과부하 50°C[kW]	10% 과부하 40°C [hp]	50% 과부하 50°C [hp]	
	0002-5	2,6	2,6	2,9	1,8	1,9	2,7	3,6	0,75	0,55	1,0	0,75	
	0003-5	3,4	3,4	3,7	2,6	2,8	3,9	5,2	1,1	0,75	1,5	1,0	
	0004-5	4,8	4,6	5,3	3,4	3,4	5,1	6,8	1,5	1,1	2,0	1,5	
FR1	0006-5	6	5,4	6,6	4,8	4,2	7,2	9,6	2,2	1,5	3,0	2,0	
	0008-5	8	8,1	8,8	6	6,0	9,0	12,0	3,0	2,2	4,0	3,0	
	0009-5	9,6	9,3	10,6	8	8,1	12,0	16,0	4,0	3,0	5,0	4,0	
	0012-5	12,2	11,3	13,4	9,6	9,3	14,4	19,2	5,5	4,0	7,5	5,0	
	0016-5	16,3	15,4	17,9	12,2	12,4	18,3	24,4	7,5	5,5	10,0	7,5	
FR2	0023-5	23,2	21,3	25,5	16,3	15,4	24,5	32,6	11,0	7,5	15,0	10,0	
	0031-5	31	28,4	34,1	23,2	21,6	34,8	46,4	15,0	11,0	20,0	15,0	
	0038-5	38	36,7	41,8	31	30,5	46,5	62,0	18,5	15,0	25,0	20,0	
FR3	0046-5	46	43,6	50,6	38	36,7	57,0	76,0	22,0	18,5	30,0	25,0	
	0061-5	61	58	67,1	46	45,6	69,0	92,0	30,0	22,0	40,0	30,0	
	0074-5	74,5	68	82,0	61	58,2	91,5	122,0	37,0	30,0	50,0	40,0	
FR4	0090-5	90,3	85	99,3	74,5	72,0	111,8	149,0	45,0	37,0	60,0	50,0	
	0106-5	106,7	101	117,4	90,3	85,3	135,5	180,6	55,0	45,0	75,0	60,0	
	0152-5	152	140	167,2	106,7	109,0	160,1	213,4	75,0	55,0	100,0	75,0	
FR5	0170-5	170	167	187,0	152	139,4	228,0	304,0	90,0	75,0	125,0	100,0	
	0223-5	223	217	245,3	170	166,5	255,0	340,0	110,0	90,0	150,0	125,0	
EDC.	0264-5	264	258	290,4	223	204,0	334,5	446,0	132,0	110,0	200,0	150,0	
FK0	0310-5	310	303	341,0	254	246,0	381,0	508,0	160,0	132,0	250,0	200,0	

참조! 주어진 주위 온도의 전류는 스위칭 주파수가 기본값 이하인 경우에만 가능합니다.

프로세스 상에 순환 부하, 예를 들어 리프트나 윈치가 있는 경우가 포함되는 경우에는 제조사에 치수 정보를 문의하세요.

과부하 용량

낮은 과부하는 직류(I_L) 110%가 매 10분마다 1분씩 필요한 경우, 남아있는 9분은 I_L의 약 98% 이하여야 한다는 것을 의미합니다. 출력 전류가 듀티 사이클 동안 I_L 이하임을 확실히 하기 위함입니다.

그림 51: 경부하 운전 조건

높은 과부하는 직류(I_H) 150%가 매 10분마다 1분씩 필요한 경우, 남아있는 9분은 I_H의 약 92% 이하여야 한다는 것을 의미합니다. 출력 전류가 듀티 사이클 동안 I_H 이하임을 확실히 하기 위함입니다.

그림 52: 중부하 운전 조건

보다 자세한 정보는 표준 IEC61800-2 (IEC:1998)을 참조하세요.

브레이크 저항기 정격

- 라이트 듀티 사이클은 브레이크 저항기를 주기적으로 사용하기 위함입니다 (120초 내 1LD 펄스).
 라이트 듀티 저항기는 전출력에서 0까지 5초 램프에 대해 견딜 수 있습니다.
 브레이크 전력 LD 펄스 100% = 1.1 x PLD (정격 모터 샤프트 전력)
- 헤비 듀티 사이클은 브레이크 저항기를 주기적으로 사용하기 위함입니다 (120초 내 1HD 펄스). 헤비 듀티 저항기는 0까지 7초 램프와 더불어 3초 전출력 제동에 대해 견딜 수 있습니다.
 브레이크 전력 HD 펄스 100% = 1.5 x PHD (정격 모터 샤프트 전력)

그림 54: LD 및 HD 펄스의 듀티 사이클

필드버스 연결

RS485 또는 Ethernet 케이블로 드라이브와 필드버스를 연결할 수 있습니다. RS485 케이블을 사용하는 경우, RS485를 표준 I/O 보드의 터미널 T1과 B1-B2에 연결하세요. Ethernet 케이블을 사용하는 경우, Ethernet 케이블을 Ethernet 터미널과 연결하세요. 그림 35~36 및 표 23을 참조하세요.

Ethernet 케이블을 통해 필드버스 사용하기

항목	설명
플러그 유형	차폐 RJ45 플러그, (FR1 최대 길이 40mm (1.57인치))
케이블 유형	CAT5e STP
케이블 길이	최대 100m (328ft)

1. Ethernet 케이블을 Ethernet 터미널과 연결하세요.

2. FR1-FR4: Ethernet 케이블용 AC 드라이브의 덮개에 있는 입구를 절단합니다.

3. 드라이브 덮개를 다시 제자리에 놓으세요. Ethernet 케이블과 모터 케이블 사이 길이는 최소 30cm (11.81인치)를 유지하세요.

4. 보다 자세한 사항은 보유 중인 필드버스 설치 매뉴얼을 참조하세요.

RS485 케이블을 통해 필드버스 사용하기

표 124: RS485 케이블 데이터

항목	설명
터미널 유형	최대 와이어 1.5mm2 / AWG 14
케이블 유형	STP (차폐 연선) 표 13 및 그림 22 참조
케이블 길이	케이블 길이를 최대한 짧게 유지하세요. 링크 최대 길이가 50m (164ft)입니다.

RS485 케이블링

1. RS485 케이블의 회색 보호 장치를 약 15mm (0.59인치) 정도 제거하세요. 필드버스 케이블
2개에도 동일한 동작을 수행합니다.

a) 케이블을 약 5mm (0.20인치) 정도 벗겨 터미널에 설치합니다.
 터미널 밖에 케이블이 10mm (0.39인치) 이상 나오지 않도록 합니다.
 b) 제어 케이블용 접지 클램프가 있는 프레임에 부착할 수 있는
 터미닐에서 해당 거리에 케이블을 벗깁니다. 케이블을 최대 15mm

(0.59인치) 길이로 벗기세요. 케이블의 알루미늄 피복은 제거하지 마세요. 2. 케이블의 "A" 끝을 표준 I/O 보드 터미널 B1에, "B" 끝을 터미널B2에 연결하세요. 표 23을 참조하세요.

보다 높은 내성이나 고주파수 일반 모드 신호 GND (옵션)을 위해서는 2x2 연선을 사용하세요. 두 번째 전선쌍을 터미널 T1에 연결하세요.

3. 접지 클램프로 케이블 실드를 드라이브 프레임에 부착해 제어 케이블이 접지 연결되도록 합니다.

4. 드라이브가 독립형이거나 필드버스 라인에서 첫 번째
또는 마지막 장치인 경우, 점퍼 (E)를 사이트에 두세요. 그림
55를 참조하세요. 그렇지 않으면 점퍼를 제거합니다.
바이어스가 버스 종단 저항기에 내장됩니다. 종단 저항은
120Ω입니다.

5. 필요 시, RS485 케이블용 드라이브의 덮개에 있는 입구를 절단합니다.

6. 드라이브 덮개를 다시 제자리에 놓으세요. RS485 케이블을 옆으로 잡아 당기세요. Ethernet, I/O 및 필드버스 케이블과 모터 케이블 사이 길이는 최소 30cm (11.81인치)를 유지하세요.

7. 필드버스 라인의 첫 번째 및 마지막 장치에 대한 버스 종단을 설정하세요. 필드버스 첫 번째 장치를 마스터 장치로 사용할 것을 권장합니다.

참조!

라인의 마지막 장치를 제거하는 경우, 버스 종단이 없습니다.

유지보수

드라이브를 올바르게 작동시키고 수명을 연장하기 위해 주기적인 유지보수 작업을 권장합니다. 유지보수 간격은 표를 참조하세요.

드라이브 중간 DC 회로는 여러 개의 전해 캐패시터를 사용합니다. 이들 수명은 드라이브 작동 시간, 로딩 및 주위 온도에 따라 다릅니다. 주위 온도를 낮추면 캐패시터 수명을 연장할 수 있습니다.

프레임 FR1 ~ FR3의 캐패시터는 캐패시터 보드에 통합되어 있고 프레임 FR4 ~ FR6의 캐패시터는 분리되어 있습니다.

캐패시터 고장은 주로 장치 손상 및 입력 케이블 퓨즈 고장,또는 고장 트립으로 인한 경우가 많습니다. 정품 부품 외 다른 부품을 사용하지 마세요.

캐패시터 재충전

장시간 보관한 후에는 캐피시터를 재충전해야 캐패시터 손상을 막을 수 있습니다. 캐패시터를 통해 누설 가능한 전류의 상한값을 반드시 제한해야 합니다. 가장 좋은 방법은 전류 한계를 조절할 수 있는 DC-전원 공급 장치를 이용하는 것입니다.

- 1) 드라이브 크기에 따라 전류 한계를 300...800mA로 설정하세요.
- 2) DC- 전원 공급 장치를 DC+/DC- 터미널에 연결하세요. DC+/DC- 터미널이 없는 컨버터는 두 입력상 (L1과 L2) 사이에 DC- 공급 장치를 연결해 전원을 공급할 수 있습니다.
- 3) DC- 전압을 장치의 정격 DC- 전압 레벨 (1.35*Un AC)로 설정하고 컨버터에 최소 1시간 동안 공급하세요..

DC- 전압을 공급할 수 없고 장치를 다시 충전한 상태로 12개월 이상 보관한 경우, 전원을 연결하기 전에 공장에 문의하세요.

유지보수 간격	유지보수 작업	
정기적	터미널의 체결 토크를 확인하세요.	
6~24개월 (간격은 각기 다른 환경마다 상이합니다.)	주전원 케이블 터미널, 모터 케이블 터미널 및 제어 터미널을 점검하세요. 냉각 팬이 올바르게 작동하는지 확인하세요. 터미널, 부스바 또는 기타 표면에 부식이 없는지 확인하세요. 캐비닛 설치 시, 도어 필터를 점검하세요.	
24개월 (간격은 각기 다른 환경마다 상이합니다.)	방열판과 냉각 터널을 세척하세요.	
6~10년	주 팬을 교체하세요.	
10년	RTC 배터리를 교체하세요.	

표 125 유지보수 간격 및 작업

본 사 부 산 광 주 대 구	서울특별시 종로구 율곡로 75 경기도 성남시 분당구 분당로 55 분당 퍼스트타워 5층 울산광역시 동구 방어진순환도로1000 부산광역시사상구 가야대로 141(기아자동차부산서비스센터2층) 광주광역시 서구 무진대로 966 (현대빌딩 별관 3층) 대구광역시 북구 유통단지로8길 120-14	영업 TEL: (031)8006-6798 설계 TEL: (052)202-8413 TEL: (051)463-4382 TEL: (062)368-9097 TEL: (053)746-0555~6	Fax: (031)8006-6898 Fax: (052)203-8410 Fax: (051)463-8843 Fax: (062)366-9097 Fax: (053)746-0557
고객지원센터(전국)	경기도 안산시 단원구 산단로 341 (6층 610호)	TEL: 1544-5011	Fax: (031)492-5283

▲현대일렉트릭

www.hyundai-electric.com

